-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadapt_wavelet_limited.h
executable file
·169 lines (150 loc) · 4.26 KB
/
adapt_wavelet_limited.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/**
an adaptation by [Cesar Pairetti](http://basilisk.fr/sandbox/pairetti/) of his
[http://basilisk.fr/sandbox/pairetti/bag_mode/adapt_wavelet_limited.h]()
is used here.
As Stephane says: "Ideally, automatic adaptation using only error control (i.e. cmax in adapt_wavelet) should be more reliable and less susceptible to "user error". I know of many examples where the adaptation functions in Gerris have been abused in this way, leading to erroneous simulations. So, hand-tuning should only be used as a last resort."
*/
#define TREE 1
struct Adapt_limited {
scalar * slist; // list of scalars
double * max; // tolerance for each scalar
int (*MLFun)(double,double,double); // give maximum level as a field
int minlevel; // minimum level of refinement (default 1)
scalar * list; // list of fields to update (default all)
};
trace
astats adapt_wavelet_limited (struct Adapt_limited p)
{
scalar * listcm = NULL;
if (is_constant(cm)) {
if (p.list == NULL)
p.list = all;
restriction (p.slist);
}
else {
if (p.list == NULL) {
listcm = list_concat (NULL, {cm,fm});
for (scalar s in all)
listcm = list_add (listcm, s);
p.list = listcm;
}
scalar * listr = list_concat (p.slist, {cm});
restriction (listr);
free (listr);
}
astats st = {0, 0};
scalar * listc = NULL;
for (scalar s in p.list)
if (!is_constant(s) && s.restriction != no_restriction)
listc = list_add (listc, s);
// refinement
if (p.minlevel < 1)
p.minlevel = 1;
tree->refined.n = 0;
static const int refined = 1 << user, too_fine = 1 << (user + 1);
foreach_cell() {
int cellMAX = p.MLFun(x,y,z);
if (is_active(cell)) {
static const int too_coarse = 1 << (user + 2);
if (is_leaf (cell)) {
if (cell.flags & too_coarse) {
cell.flags &= ~too_coarse;
refine_cell (point, listc, refined, &tree->refined);
st.nf++;
}
continue;
}
else { // !is_leaf (cell)
if (cell.flags & refined) {
// cell has already been refined, skip its children
cell.flags &= ~too_coarse;
continue;
}
// check whether the cell or any of its children is local
bool local = is_local(cell);
if (!local)
foreach_child()
if (is_local(cell)){
local = true;
break;
}
if (local) {
int i = 0;
static const int just_fine = 1 << (user + 3);
for (scalar s in p.slist) {
double max = p.max[i++], sc[1 << dimension];
int c = 0;
foreach_child()
sc[c++] = s[];
s.prolongation (point, s);
c = 0;
foreach_child() {
double e = fabs(sc[c] - s[]);
if (e > max && level < cellMAX) {
cell.flags &= ~too_fine;
cell.flags |= too_coarse;
}
else if ((e <= max/1.5 || level > cellMAX) &&
!(cell.flags & (too_coarse|just_fine))) {
if (level >= p.minlevel)
cell.flags |= too_fine;
}
else if (!(cell.flags & too_coarse)) {
cell.flags &= ~too_fine;
cell.flags |= just_fine;
}
s[] = sc[c++];
}
}
foreach_child() {
cell.flags &= ~just_fine;
if (!is_leaf(cell)) {
cell.flags &= ~too_coarse;
if (level >= cellMAX)
cell.flags |= too_fine;
}
else if (!is_active(cell))
cell.flags &= ~too_coarse;
}
}
}
}
else // inactive cell
continue;
}
mpi_boundary_refine (listc);
// coarsening
// the loop below is only necessary to ensure symmetry of 2:1 constraint
for (int l = depth(); l >= p.minlevel; l--) {
foreach_cell()
if (!is_boundary(cell)) {
if (level == l) {
if (!is_leaf(cell)) {
if (cell.flags & refined)
// cell was refined previously, unset the flag
cell.flags &= ~(refined|too_fine);
else if (cell.flags & too_fine) {
if (is_local(cell) && coarsen_cell (point, listc))
st.nc++;
cell.flags &= ~too_fine; // do not coarsen parent
}
}
if (cell.flags & too_fine)
cell.flags &= ~too_fine;
else if (aparent(0).flags & too_fine)
aparent(0).flags &= ~too_fine;
continue;
}
else if (is_leaf(cell))
continue;
}
mpi_boundary_coarsen (l, too_fine);
}
free (listc);
mpi_all_reduce (st.nf, MPI_INT, MPI_SUM);
mpi_all_reduce (st.nc, MPI_INT, MPI_SUM);
if (st.nc || st.nf)
mpi_boundary_update (p.list);
free (listcm);
return st;
}