-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPointTriangle.h
314 lines (306 loc) · 6.76 KB
/
PointTriangle.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#define vecdot(a,b) ((a).x*(b).x + (a).y*(b).y + (a).z*(b).z)
#define vecdotproduct(a,b) ((coord){(a).y*(b).z - (a).z*(b).y, \
(a).z*(b).x - (a).x*(b).z, \
(a).x*(b).y - (a).y*(b).x})
#define vecdiff(a,b) ((coord){(a).x - (b).x, (a).y - (b).y, (a).z - (b).z})
#define vecdist2(a,b) (sq((a).x - (b).x) + sq((a).y - (b).y) + sq((a).z - (b).z))
/**
* Returns the squared distance between point P and triangle P0, P1,
* P2. Squared distance is returned in d2. s and t returns the
* closest point in parametric form in terms of edges P0P1 and P0P2.
*/
double PointTriangleDistance (const coord * P,
const coord * P0,
const coord * P1,
const coord * P2,
double * s, double * t)
{
// From http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
double d2;
coord diff = vecdiff (*P0, *P);
coord edge0 = vecdiff(*P1, *P0);
coord edge1 = vecdiff(*P2, *P0);
double a00 = vecdot(edge0, edge0);
double a01 = vecdot(edge0, edge1);
double a11 = vecdot(edge1, edge1);
double b0 = vecdot(diff, edge0);
double b1 = vecdot(diff, edge1);
double c = vecdot(diff, diff);
double det = fabs(a00*a11 - a01*a01);
*s = a01*b1 - a11*b0;
*t = a01*b0 - a00*b1;
if (*s + *t <= det)
{
if (*s < 0.0)
{
if (*t < 0.0) // region 4
{
if (b0 < 0.0)
{
*t = 0.0;
if (-b0 >= a00)
{
*s = 1.0;
d2 = a00 + 2.0*b0 + c;
}
else
{
*s = -b0/a00;
d2 = b0**s + c;
}
}
else
{
*s = 0.0;
if (b1 >= 0.0)
{
*t = 0.0;
d2 = c;
}
else if (-b1 >= a11)
{
*t = 1.0;
d2 = a11 + 2.0*b1 + c;
}
else
{
*t = -b1/a11;
d2 = b1**t + c;
}
}
}
else // region 3
{
*s = 0.0;
if (b1 >= 0.0)
{
*t = 0.0;
d2 = c;
}
else if (-b1 >= a11)
{
*t = 1.0;
d2 = a11 + 2.0*b1 + c;
}
else
{
*t = -b1/a11;
d2 = b1**t + c;
}
}
}
else if (*t < 0.0) // region 5
{
*t = 0.0;
if (b0 >= 0.0)
{
*s = 0.0;
d2 = c;
}
else if (-b0 >= a00)
{
*s = 1.0;
d2 = a00 + 2.0*b0 + c;
}
else
{
*s = -b0/a00;
d2 = b0**s + c;
}
}
else // region 0
{
if (det == 0.) // degenerate triangle
d2 = HUGE;
else {
double invDet = 1.0/det;
*s *= invDet;
*t *= invDet;
d2 = *s*(a00**s + a01**t + 2.0*b0) + *t*(a01**s + a11**t + 2.0*b1) + c;
}
}
}
else
{
if (*s < 0.0) // region 2
{
double tmp0 = a01 + b0;
double tmp1 = a11 + b1;
if (tmp1 > tmp0)
{
double numer = tmp1 - tmp0;
double denom = a00 - 2.0*a01 + a11;
if (numer >= denom)
{
*s = 1.0;
*t = 0.0;
d2 = a00 + 2.0*b0 + c;
}
else
{
*s = numer/denom;
*t = 1.0 - *s;
d2 = *s*(a00**s + a01**t + 2.0*b0) + *t*(a01**s + a11**t + 2.0*b1) + c;
}
}
else
{
*s = 0.0;
if (tmp1 <= 0.0)
{
*t = 1.0;
d2 = a11 + 2.0*b1 + c;
}
else if (b1 >= 0.0)
{
*t = 0.0;
d2 = c;
}
else
{
*t = -b1/a11;
d2 = b1**t + c;
}
}
}
else if (*t < 0.0) // region 6
{
double tmp0 = a01 + b1;
double tmp1 = a00 + b0;
if (tmp1 > tmp0)
{
double numer = tmp1 - tmp0;
double denom = a00 - 2.0*a01 + a11;
if (numer >= denom)
{
*t = 1.0;
*s = 0.0;
d2 = a11 + 2.0*b1 + c;
}
else
{
*t = numer/denom;
*s = 1.0 - *t;
d2 = *s*(a00**s + a01**t + 2.0*b0) + *t*(a01**s + a11**t + 2.0*b1) + c;
}
}
else
{
*t = 0.0;
if (tmp1 <= 0.0)
{
*s = 1.0;
d2 = a00 + 2.0*b0 + c;
}
else if (b0 >= 0.0)
{
*s = 0.0;
d2 = c;
}
else
{
*s = -b0/a00;
d2 = b0**s + c;
}
}
}
else // region 1
{
double numer = a11 + b1 - a01 - b0;
if (numer <= 0.0)
{
*s = 0.0;
*t = 1.0;
d2 = a11 + 2.0*b1 + c;
}
else
{
double denom = a00 - 2.0*a01 + a11;
if (numer >= denom)
{
*s = 1.0;
*t = 0.0;
d2 = a00 + 2.0*b0 + c;
}
else
{
*s = numer/denom;
*t = 1.0 - *s;
d2 = *s*(a00**s + a01**t + 2.0*b0) + *t*(a01**s + a11**t + 2.0*b1) + c;
}
}
}
}
// Account for numerical round-off error
if (d2 < 0.0)
{
d2 = 0.0;
}
return d2;
}
int PointTriangleOrientation (const coord * P,
const coord * P0,
const coord * P1,
const coord * P2)
{
coord diff = vecdiff (*P0, *P);
coord edge0 = vecdiff (*P1, *P0);
coord edge1 = vecdiff (*P2, *P0);
coord n = vecdotproduct (edge0, edge1);
return sign (vecdot (diff, n));
}
/**
Returns the squared distance between p and [p0:p1].
*/
double PointSegmentDistance (const coord * p, const coord * p0, const coord * p1,
coord * segmentClosest, double * segmentParameter)
{
// The direction vector is not unit length. The normalization is deferred
// until it is needed.
coord direction = vecdiff (*p1, *p0);
coord diff = vecdiff (*p, *p1);
double t = vecdot(direction, diff);
if (t >= (double)0)
{
*segmentParameter = (double)1;
*segmentClosest = *p1;
}
else
{
diff = vecdiff (*p, *p0);
t = vecdot(direction, diff);
if (t <= (double)0)
{
*segmentParameter = (double)0;
*segmentClosest = *p0;
}
else
{
double sqrLength = vecdot(direction, direction);
if (sqrLength > (double)0)
{
t /= sqrLength;
*segmentParameter = t;
(*segmentClosest).z = 0.;
foreach_dimension()
(*segmentClosest).x = (*p0).x + t * direction.x;
}
else
{
*segmentParameter = (double)0;
*segmentClosest = *p0;
}
}
}
diff = vecdiff (*p, *segmentClosest);
return vecdot(diff, diff);
}
int PointSegmentOrientation (const coord * P,
const coord * P0,
const coord * P1)
{
coord diff = vecdiff (*P0, *P);
coord edge0 = vecdiff (*P0, *P1);
coord n = vecdotproduct (diff, edge0);
return sign(n.z);
}