FastDeploy当前在GPU环境支持Paddle Inference、ONNX Runtime和TensorRT,但同时在Linux&Windows的GPU环境也同时支持CPU硬件,因此编译时也可以同步将CPU的推理后端OpenVINO编译集成
后端 | 平台 | 支持模型格式 | 说明 |
---|---|---|---|
Paddle Inference | Windows(x64) Linux(x64) |
Paddle | 同时支持CPU/GPU,编译开关ENABLE_PADDLE_BACKEND 为ON或OFF控制, 默认OFF |
ONNX Runtime | Windows(x64) Linux(x64/aarch64) Mac(x86/arm64) |
Paddle/ONNX | 同时支持CPU/GPU,编译开关ENABLE_ORT_BACKEND 为ON或OFF控制,默认OFF |
TensorRT | Windows(x64) Linux(x64) |
Paddle/ONNX | 仅支持GPU,编译开关ENABLE_TRT_BACKEND 为ON或OFF控制,默认OFF |
OpenVINO | Windows(x64) Linux(x64) |
Paddle/ONNX | 仅支持CPU,编译开关ENABLE_OPENVINO_BACKEND 为ON或OFF控制,默认OFF |
注意编译GPU环境时,需额外指定WITH_GPU
为ON,设定CUDA_DIRECTORY
,如若需集成TensorRT,还需同时设定TRT_DIRECTORY
Linux上编译需满足
- gcc/g++ >= 5.4(推荐8.2)
- cmake >= 3.18.0
- cuda >= 11.2
- cudnn >= 8.2
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy
mkdir build && cd build
cmake .. -DENABLE_ORT_BACKEND=ON \
-DENABLE_PADDLE_BACKEND=ON \
-DENABLE_OPENVINO_BACKEND=ON \
-DENABLE_TRT_BACKEND=ON \
-DWITH_GPU=ON \
-DTRT_DIRECTORY=/Paddle/TensorRT-8.4.1.5 \
-DCUDA_DIRECTORY=/usr/local/cuda \
-DCMAKE_INSTALL_PREFIX=${PWD}/compiled_fastdeploy_sdk \
-DENABLE_VISION=ON \
-DENABLE_TEXT=ON
make -j12
make install
Windows编译需要满足条件
- Windows 10/11 x64
- Visual Studio 2019
- cuda >= 11.2
- cudnn >= 8.2
注意:安装CUDA时需要勾选Visual Studio Integration
, 或者手动将C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\visual_studio_integration\MSBuildExtensions\
文件夹下的4个文件复制到C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\
文件夹。否则执行cmake命令时可能会遇到No CUDA toolset found
报错。
在Windows菜单中,找到x64 Native Tools Command Prompt for VS 2019
打开,执行如下命令
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy
mkdir build && cd build
cmake .. -G "Visual Studio 16 2019" -A x64 ^
-DENABLE_ORT_BACKEND=ON ^
-DENABLE_PADDLE_BACKEND=ON ^
-DENABLE_OPENVINO_BACKEND=ON ^
-DENABLE_TRT_BACKEND=ON ^
-DENABLE_VISION=ON ^
-DENABLE_TEXT=ON ^
-DWITH_GPU=ON ^
-DTRT_DIRECTORY="D:\Paddle\TensorRT-8.4.1.5" ^
-DCUDA_DIRECTORY="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2" ^
-DCMAKE_INSTALL_PREFIX="D:\Paddle\compiled_fastdeploy"
msbuild fastdeploy.sln /m /p:Configuration=Release /p:Platform=x64
msbuild INSTALL.vcxproj /m /p:Configuration=Release /p:Platform=x64
编译完成后,即在CMAKE_INSTALL_PREFIX
指定的目录下生成C++推理库
如您使用CMake GUI可参考文档Windows使用CMakeGUI + Visual Studio 2019 IDE编译
编译过程需要满足
- gcc/g++ >= 5.4(推荐8.2)
- cmake >= 3.18.0
- python >= 3.6
- cuda >= 11.2
- cudnn >= 8.2
Python打包依赖wheel
,编译前请先执行pip install wheel
所有编译选项通过环境变量导入
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/python
export ENABLE_ORT_BACKEND=ON
export ENABLE_PADDLE_BACKEND=ON
export ENABLE_OPENVINO_BACKEND=ON
export ENABLE_VISION=ON
export ENABLE_TEXT=ON
export ENABLE_TRT_BACKEND=ON
export WITH_GPU=ON
export TRT_DIRECTORY=/Paddle/TensorRT-8.4.1.5
export CUDA_DIRECTORY=/usr/local/cuda
python setup.py build
python setup.py bdist_wheel
编译过程同样需要满足
- Windows 10/11 x64
- Visual Studio 2019
- python >= 3.6
- cuda >= 11.2
- cudnn >= 8.2
在Windows菜单中,找到x64 Native Tools Command Prompt for VS 2019
打开,执行如下命令
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/python
set ENABLE_ORT_BACKEND=ON
set ENABLE_PADDLE_BACKEND=ON
set ENABLE_OPENVINO_BACKEND=ON
set ENABLE_VISION=ON
set ENABLE_TEXT=ON
set ENABLE_TRT_BACKEND=ON
set WITH_GPU=ON
set TRT_DIRECTORY=D:\Paddle\TensorRT-8.4.1.5
set CUDA_DIRECTORY=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
python setup.py build
python setup.py bdist_wheel
编译完成即会在FastDeploy/python/dist
目录下生成编译后的wheel
包,直接pip install即可
编译过程中,如若修改编译参数,为避免带来缓存影响,可删除FastDeploy/python
目录下的build
和.setuptools-cmake-build
两个子目录后再重新编译