-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
95 lines (81 loc) · 2.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import paddlex as pdx
import paddlehub as hub
import paddle.fluid as fluid
import numpy as np
from paddlex.cls import transforms
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# 加载数据
def load_data(data_base_path):
datas = []
for i in range(10):
data_path = data_base_path + '/imgs/train/c{}/'.format(i)
for im in os.listdir(data_path):
pt = os.path.join(data_base_path+'/imgs/train/c{}/'.format(i), im)
line = '{} {}'.format(pt, i)
datas.append(line)
np.random.seed(10)
np.random.shuffle(datas)
total_num = len(datas)
train_num = int(0.8*total_num)
test_num = int(0.1*total_num)
valid_num = total_num - train_num - test_num
print('train:', train_num)
print('valid:', valid_num)
print('test:', test_num)
with open('train_list.txt', 'w') as f:
for v in datas[:train_num]:
f.write(v+'\n')
with open('test_list.txt', 'w') as f:
for v in datas[-test_num:]:
f.write(v+'\n')
with open('val_list.txt', 'w') as f:
for v in datas[train_num:-test_num]:
f.write(v+'\n')
with open('labels.txt', 'w') as f:
for i in range(10):
f.write('ch{}\n'.format(i))
train_transforms = transforms.Compose([
transforms.ResizeByShort(short_size=256),
transforms.RandomCrop(crop_size=224),
transforms.RandomDistort(),
transforms.Normalize()
])
eval_transforms = transforms.Compose([
transforms.ResizeByShort(short_size=256),
transforms.CenterCrop(crop_size=224),
transforms.Normalize()
])
train_dataset = pdx.datasets.ImageNet(
data_dir='',
file_list='train_list.txt',
label_list='labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.ImageNet(
data_dir='',
file_list='val_list.txt',
label_list='labels.txt',
transforms=eval_transforms)
num_classes = len(train_dataset.labels)
print(num_classes)
return train_dataset, eval_dataset, num_classes
def model_train(train_dataset, eval_dataset, num_classes):
model = pdx.cls.MobileNetV3_small_ssld(num_classes=num_classes)
model.train(num_epochs=20,
train_dataset=train_dataset,
train_batch_size=32,
log_interval_steps=20,
eval_dataset=eval_dataset,
lr_decay_epochs=[1],
save_interval_epochs=1,
learning_rate=0.01,
save_dir='output/mobilenetv3')
def model_eval(eval_dataset):
save_dir = 'output/mobilenetv3/best_model'
model = pdx.load_model(save_dir)
model.evaluate(eval_dataset, batch_size=1, epoch_id=None, return_details=False)
if __name__ == "__main__":
train_dataset, eval_dataset, num_classes=load_data("../data")
model_train(train_dataset, eval_dataset, num_classes)
model_eval(eval_dataset)