forked from AlaieT/pytorch-spice-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
114 lines (80 loc) · 4.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
__author__ = 'Alaie Titor'
from typing import *
import argparse
from utils import read
from pickle import load
import torch
import segmentation_models_pytorch as smp
import seaborn as sns
import matplotlib.pyplot as plt
import os
import time
def mape(y_pred: torch.Tensor, y_true: torch.Tensor):
y_pred = y_pred.flatten()
y_true = y_true.flatten()
index = y_true.nonzero()
loss = (y_pred[index] - y_true[index]) / y_true[index]
return loss.abs().mean() * 100
def get_min(target):
tmp = target.flatten()
return torch.min((tmp[tmp.nonzero()]*(1.8 - 1.6) + 1.6)/1.8).item()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Test nn with ground truth.')
parser.add_argument("-p", "--path", default="./assets/test", help="Path to dataset.")
parser.add_argument("-s", "--scaler", default="./dict/scaler/scaler.pkl", help="Path to scaler.")
parser.add_argument("-m", "--model", default='./dict/dnn/best.pt', help="Path to model.")
namespace = parser.parse_args()
path = namespace.path
path_scaler = namespace.scaler
path_model = namespace.model
tests = os.listdir(path)
with open(path_scaler, "rb") as file:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
scaler = load(file)
aux_params = dict(pooling='avg', dropout=0, activation=None, classes=1)
model = smp.Unet(encoder_name="resnet50", encoder_weights="imagenet", in_channels=3, classes=1, activation=None, aux_params=aux_params).eval().to(device)
model.load_state_dict(torch.load(path_model))
preds = []
for test in tests:
start_time = time.time()
name = test.split("/")[-1].split(".")[0]
print(F"Testing - {name}")
matrix, target = read(F"{path}/{test}/{name}.sp", F'{path}/{test}/{name}.csv', size=(128, 352))
matrix, target = scaler.scale(matrix.to(device)).unsqueeze(0), target.to(device)
with torch.no_grad():
prediction, min_prediction = model(matrix)
target = target.squeeze().squeeze()
prediction = prediction.squeeze().squeeze()
# Gettin values from resistor mask
nonzero_indexes = (target == 0).nonzero()
prediction[nonzero_indexes[:, 0], nonzero_indexes[:, 1]] = 0
target[nonzero_indexes[:, 0], nonzero_indexes[:, 1]] = 0
# Removin padding
prediction = prediction
prediction = prediction[~torch.all(prediction == 0, axis=1)]
prediction = prediction[:, ~torch.all(prediction == 0, axis=0)]
prediction = torch.where(prediction > 0, (prediction*(1.8 - 1.6) + 1.6)/1.8, 0)
min_prediction = ((min_prediction*(1.8 - 1.6) + 1.6)/1.8).item()
target = target
target = target[~torch.all(target == 0, axis=1)]
target = target[:, ~torch.all(target == 0, axis=0)]
target = torch.where(target > 0, (target*(1.8 - 1.6) + 1.6)/1.8, 0)
min_target = target.flatten()
min_index = min_target.nonzero()
min_target = min_target[min_index].min().item()
# Calculate loss
loss = mape(prediction, target).item()
preds.append(loss)
print(F"MAPE: {loss:.5}%, MIN_MAPE: {abs(min_prediction - min_target)/min_target*100:.5}%, TIME: {time.time() - start_time}\n")
min_target = torch.min(target.flatten()[target.flatten().nonzero()]).item()
prediction = prediction.cpu().numpy()
target = target.cpu().numpy()
heatmap = sns.heatmap(data=prediction, cmap="coolwarm_r", vmin=min_target, vmax=1, mask=(prediction == 0))
heatmap.set_facecolor("black")
plt.savefig(F'{path}/{test}/prediction.png')
plt.close()
heatmap = sns.heatmap(data=target, cmap="coolwarm_r", vmin=min_target, vmax=1, mask=(target == 0))
heatmap.set_facecolor("black")
plt.savefig(F'{path}/{test}/target.png')
plt.close()
print(f"MEAN MAPE: {sum(preds)/len(preds)}%")