forked from zxjzxj9/PyTorchIntroduction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_2_37.py
31 lines (27 loc) · 1.1 KB
/
ex_2_37.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
""" 该代码可以直接使用 python ex_2_37.py 运行(需要安装TensorBoard)
(#号及其后面内容为注释,可以忽略)
结合ex_2_20.py中定义的LinearModel模型
"""
from sklearn.datasets import load_boston
from torch.utils.tensorboard import SummaryWriter
import torch
import torch.nn as nn
from ex_2_20 import LinearModel
boston = load_boston()
lm = LinearModel(13)
criterion = nn.MSELoss()
optim = torch.optim.SGD(lm.parameters(), lr=1e-6)
data = torch.tensor(boston["data"], requires_grad=True, dtype=torch.float32)
target = torch.tensor(boston["target"], dtype=torch.float32)
writer = SummaryWriter() # 定义TensorBoard输出类
for step in range(10000):
predict = lm(data)
loss = criterion(predict, target)
writer.add_scalar("Loss/train", loss, step) # 输出损失函数
writer.add_histogram("Param/weight", lm.weight, step) # 输出权重直方图
writer.add_histogram("Param/bias", lm.bias, step) # 输出偏置直方图
if step and step % 1000 == 0 :
print("Loss: {:.3f}".format(loss.item()))
optim.zero_grad()
loss.backward()
optim.step()