forked from zxjzxj9/PyTorchIntroduction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtacotron.py
243 lines (198 loc) · 9.42 KB
/
tacotron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
""" 以下代码仅为Tacotron模型的一个参考实现
"""
import torch
import torch.nn as nn
# Tacotron编码器
class Encoder(nn.Module):
def __init__(self, encoder_n_convolutions,
encoder_embedding_dim, encoder_kernel_size):
super(Encoder, self).__init__()
convolutions = []
for _ in range(encoder_n_convolutions):
conv_layer = nn.Sequential(
nn.Conv1d(
encoder_embedding_dim,
encoder_embedding_dim,
kernel_size=encoder_kernel_size,
stride=1,
padding=encoder_kernel_size//2,
dilation=1),
nn.BatchNorm1d(encoder_embedding_dim))
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
self.lstm = nn.LSTM(encoder_embedding_dim,
encoder_embedding_dim // 2, 1,
batch_first=True, bidirectional=True)
def forward(self, x, input_lengths):
# 假设输入为N×C×T
for conv in self.convolutions:
x = F.dropout(F.relu(conv(x)), 0.5, self.training)
x = x.transpose(1, 2)
input_lengths = input_lengths.cpu().numpy()
x = nn.utils.rnn.pack_padded_sequence(
x, input_lengths, batch_first=True)
self.lstm.flatten_parameters()
outputs, _ = self.lstm(x)
outputs, _ = nn.utils.rnn.pad_packed_sequence(
outputs, batch_first=True)
return outputs
# Tacotron前处理/后处理代码
class Prenet(nn.Module):
def __init__(self, in_dim, sizes):
super(Prenet, self).__init__()
in_sizes = [in_dim] + sizes[:-1]
self.layers = nn.ModuleList(
[nn.Linear(in_size, out_size, bias=False)
for (in_size, out_size) in zip(in_sizes, sizes)])
def forward(self, x):
for linear in self.layers:
x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
return x
class Postnet(nn.Module):
def __init__(self, n_mel_channels, postnet_embedding_dim,
postnet_kernel_size, postnet_n_convolutions):
super(Postnet, self).__init__()
self.convolutions = nn.ModuleList()
self.convolutions.append(
nn.Sequential(
nn.Conv1d(n_mel_channels, postnet_embedding_dim,
kernel_size=postnet_kernel_size, stride=1,
padding=postnet_kernel_size // 2),
dilation=1),
nn.BatchNorm1d(postnet_embedding_dim))
)
for i in range(1, postnet_n_convolutions - 1):
self.convolutions.append(
nn.Sequential(
nn.Comv1d(postnet_embedding_dim,
postnet_embedding_dim,
postnet_kernel_size, stride=1,
padding=postnet_kernel_size // 2,
dilation=1),
nn.BatchNorm1d(postnet_embedding_dim))
)
self.convolutions.append(
nn.Sequential(
ConvNorm(postnet_embedding_dim, n_mel_channels,
kernel_size=postnet_kernel_size, stride=1,
padding=postnet_kernel_size // 2,
dilation=1, w_init_gain='linear'),
nn.BatchNorm1d(n_mel_channels))
)
def forward(self, x):
for i in range(len(self.convolutions) - 1):
x = F.dropout(torch.tanh(self.convolutions[i](x)),
0.5, self.training)
x = F.dropout(self.convolutions[-1](x), 0.5, self.training)
return x
# Tacotron注意力机制
class LocationLayer(nn.Module):
def __init__(self, attention_n_filters, attention_kernel_size,
attention_dim):
super(LocationLayer, self).__init__()
padding = attention_kernel_size // 2
self.location_conv = nn.Conv2d(2, attention_n_filters,
kernel_size=attention_kernel_size,
padding=padding, bias=False, stride=1,
dilation=1)
self.location_dense = nn.Linear(attention_n_filters, attention_dim,
bias=False)
def forward(self, attention_weights_cat):
processed_attention = self.location_conv(attention_weights_cat)
processed_attention = processed_attention.transpose(1, 2)
processed_attention = self.location_dense(processed_attention)
return processed_attention
class Attention(nn.Module):
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
attention_location_n_filters,
attention_location_kernel_size):
super(Attention, self).__init__()
self.query_layer = nn.Linear(attention_rnn_dim,
attention_dim,bias=False)
self.memory_layer = nn.Linear(embedding_dim,
attention_dim, bias=False)
self.v = nn.Linear(attention_dim, 1, bias=False)
self.location_layer = LocationLayer(attention_location_n_filters,
attention_location_kernel_size,
attention_dim)
self.score_mask_value = -float("inf")
def get_alignment_energies(self, query, processed_memory,
attention_weights_cat):
processed_query = self.query_layer(query.unsqueeze(1))
processed_attention_weights = self.location_layer(
attention_weights_cat)
energies = self.v(torch.tanh(
processed_query + processed_attention_weights + \
processed_memory))
energies = energies.squeeze(-1)
return energies
def forward(self, attention_hidden_state, memory, processed_memory,
attention_weights_cat, mask):
alignment = self.get_alignment_energies(
attention_hidden_state, processed_memory,
attention_weights_cat)
if mask is not None:
alignment.data.masked_fill_(mask, self.score_mask_value)
attention_weights = F.softmax(alignment, dim=1)
attention_context = torch.bmm(attention_weights.unsqueeze(1),
memory)
attention_context = attention_context.squeeze(1)
return attention_context, attention_weights
# Tacotron解码器
class Decoder(nn.Module):
def __init__(self, n_mel_channels, n_frames_per_step,
encoder_embedding_dim, attention_rnn_dim,
decoder_rnn_dim, prenet_dim, max_decoder_steps,
gate_threshold, p_attention_dropout,
attention_dim, attention_location_n_filters,
attention_location_kernel_size, p_decoder_dropout):
super(Decoder, self).__init__()
# 将输入参数保存到类的属性中
# ... (此处省略保存输入参数的代码)
self.prenet = Prenet(
n_mel_channels * n_frames_per_step,
[prenet_dim, prenet_dim])
self.attention_rnn = nn.LSTMCell(
prenet_dim + encoder_embedding_dim,
attention_rnn_dim)
self.attention_layer = Attention(
attention_rnn_dim, encoder_embedding_dim,
attention_dim, attention_location_n_filters,
attention_location_kernel_size)
self.decoder_rnn = nn.LSTMCell(
attention_rnn_dim + encoder_embedding_dim,
decoder_rnn_dim, 1)
self.linear_projection = nn.Linear(
decoder_rnn_dim + encoder_embedding_dim,
n_mel_channels * n_frames_per_step)
self.gate_layer = nn.Linear(
decoder_rnn_dim + encoder_embedding_dim, 1,
bias=True)
def decode(self, decoder_input):
# 输入解码器的梅尔过滤器特征,进行注意力机制的计算和循环神经网络计算
# 输出解码结果,即是否终止的预测和注意力的权重
cell_input = torch.cat((decoder_input, self.attention_context), -1)
self.attention_hidden, self.attention_cell = self.attention_rnn(
cell_input, (self.attention_hidden, self.attention_cell))
self.attention_hidden = F.dropout(
self.attention_hidden, self.p_attention_dropout, self.training)
attention_weights_cat = torch.cat(
(self.attention_weights.unsqueeze(1),
self.attention_weights_cum.unsqueeze(1)), dim=1)
self.attention_context, self.attention_weights = \
self.attention_layer(self.attention_hidden,
self.memory, self.processed_memory,
attention_weights_cat, self.mask)
self.attention_weights_cum += self.attention_weights
decoder_input = torch.cat(
(self.attention_hidden, self.attention_context), -1)
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
decoder_input, (self.decoder_hidden, self.decoder_cell))
self.decoder_hidden = F.dropout(
self.decoder_hidden, self.p_decoder_dropout, self.training)
decoder_hidden_attention_context = torch.cat(
(self.decoder_hidden, self.attention_context), dim=1)
decoder_output = self.linear_projection(
decoder_hidden_attention_context)
gate_prediction = self.gate_layer(decoder_hidden_attention_context)
return decoder_output, gate_prediction, self.attention_weights