-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathuffd.cpp
657 lines (561 loc) · 18.7 KB
/
uffd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#include <assert.h>
#include <chrono>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <linux/userfaultfd.h>
#include <unistd.h>
// See comment in the header for more info
#include "uffd_missing_header_bits.hpp"
////////////////////////////////////////////////////////////////////
// userfaultfd Write Protection Test
//
// Aditya Mandaleeka
// July 28 2020, Hackathon
//
// This is a sample program I wrote to learn more about the
// userfaultfd write protection capabilities introduced
// recently in the mainline Linux kernel.
//
// In addition to learning, I also wanted to compare how UFFD
// WP compares to using the traditional PROT_NONE+SEGV handler
// trick in order to catch dirtied memory pages. This is useful
// for specific VM/GC usecases; one example is for cross-
// generational write tracking, and another is safepoint polls.
//
// Using signal handlers for such control flow "works", but it
// has problems:
// - Handling signals is very expensive and involves a lot
// of work on the kernel side every time a signal is
// raised. Handling it all in userspace can thus be a
// performance win.
// - Modifying access protections on memory regions involves
// touching the VMA entries in the mm subsystem, which not
// only involves taking some low-level locks, but also
// leads to a proliferation of VMAs when dealing with a
// large address region with permissions that can be dis-
// contiguous over the span of the process's lifetime.
// The UFFD code avoids the need to deal with VMAs entirely.
// - Signal handlers are touchy about what's actually safe
// to do inside them, so we have to be extra careful when
// doing interesting things from the context of the SEGV
// handler, often jumping through extra hoops to make it
// safe.
//
// Note: all of this was done in an afternoon/evening as part of
// a hackathon, so the code cuts a few corners, but I believe the
// concept is sound and would like to hear if the test can be
// improved!
//
////////////////////////////////////////////////////////////////////
static const int PAGE_SIZE = 4096;
static const int PAGE_COUNT = 5000000;
static const uint64_t ALLOC_SIZE = (uint64_t)PAGE_SIZE * PAGE_COUNT;
// Use a char per page for now. The wasted memory isn't really of interest
// for this experiment;
static char* PAGE_TRACKER;
// Used for tracking the start of the desired region. Think of this like
// a heap base for GC.
// TODO: turn all the dirty tracking stuff into a class and get rid of
// these globals.
static void* REGION_BASE;
// Choose one to use for measuring elapsed time
#define USE_RDTSC 0
#define USE_CHRONO 1
static_assert(USE_CHRONO || USE_RDTSC, "Must specify clock to use for timing!");
// Aren't they?
#define EXTRA_CHECKS_ARE_FUN 0
void* allocate_mem_with_mmap(size_t num_bytes)
{
void* addr = ::mmap(0,
num_bytes,
PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS,
0 /* fd */,
0 /* offset*/);
if (addr == MAP_FAILED)
{
printf("ERROR: mmap failed. errno: %d\n", errno);
exit(-1);
}
return addr;
}
int fill_with_pattern_seq(void* addr, char pattern, uint64_t len_bytes)
{
char* cur = (char*)addr;
for (uint64_t i = 0; i < len_bytes; i++)
{
*cur = pattern;
cur++;
}
return 0;
}
int n_random_writes(void* addr, char pattern, uint64_t len_bytes, int num_writes)
{
srand(1337);
for (int i = 0; i < num_writes; i++)
{
int byte_to_set = rand() % len_bytes;
char* cur = (char*)((uint64_t)addr + byte_to_set);
*cur = pattern;
cur++;
}
return 0;
}
// Protect a range with UFFD WP
int protect_range(int uffd, void* addr, uint64_t length)
{
struct uffdio_range range = {
(__u64)addr,
length
};
struct uffdio_writeprotect wp_args = {range, UFFDIO_WRITEPROTECT_MODE_WP};
return ioctl(uffd, UFFDIO_WRITEPROTECT, &wp_args);
}
// Protect a range with mprotect
int protect_range_with_mprotect(void* addr, uint64_t length)
{
int ret = mprotect(addr, length, PROT_NONE);
if (ret != 0)
{
printf("mprotect failed to set PROT_NONE with %d. errno: %d\n", ret, errno);
}
return ret;
}
void* align_to_page_boundary(void* addr)
{
// TODO: make this better
return (void*)((uint64_t)addr & ~(PAGE_SIZE-1));
}
// Resume without the WP mode
// TODO: Check if there is a canonical way to re-protect it so that any future
// writes to this page are also caught.
int resume_without_wp(int uffd, void* addr, uint64_t length)
{
addr = align_to_page_boundary(addr);
struct uffdio_range range = {
(__u64)addr,
length
};
struct uffdio_writeprotect wp_args = {range, 0};
return ioctl(uffd, UFFDIO_WRITEPROTECT, &wp_args);
}
int resume_with_mprotect_rw(void* addr, uint64_t length)
{
addr = align_to_page_boundary(addr);
int ret = mprotect(addr, length, PROT_READ|PROT_WRITE);
if (ret != 0)
{
printf("mprotect failed to set RW with %d. errno: %d\n", ret, errno);
}
return ret;
}
// Register a range of memory for use with UFFD WP
int register_range_with_wp(int uffd, void* addr, uint64_t length)
{
struct uffdio_range range = {
(__u64)addr,
length
};
unsigned int ctls = 0;
struct uffdio_register reg_args = {
range,
UFFDIO_REGISTER_MODE_WP,
ctls
};
int ret = ioctl(uffd, UFFDIO_REGISTER, ®_args);
if (ret != 0)
{
printf("UFFDIO_REGISTER failed. errno: %d\n", errno);
exit(-1);
}
return ret;
}
// In a real runtime, this would have to do some extra work to determine whether
// this is a "real" segfault or just the write tracking signal and handle it
// accordingly. We're skipping all that stuff here since we always assume this
// is going to be a write protection fault we caused intentionally.
void sigsegv_handler(int code, siginfo_t *siginfo, void *context)
{
size_t addr = (size_t)siginfo->si_addr;
// printf("Yay, SIGSEGV handler caught a write at %p\n", (void*)addr);
// Dirty the page in our tracker
int page_number = (addr - (uint64_t)REGION_BASE) / PAGE_SIZE;
PAGE_TRACKER[page_number] = (char)1;
resume_with_mprotect_rw((void*)addr, PAGE_SIZE);
}
void register_segv_handler()
{
struct sigaction action;
action.sa_flags = SA_RESTART;
action.sa_handler = NULL;
action.sa_sigaction = sigsegv_handler;
action.sa_flags |= SA_SIGINFO;
sigemptyset(&action.sa_mask);
int ret = sigaction(SIGSEGV, &action, nullptr);
if (ret != 0)
{
printf("sigaction failed with %d. errno: %d\n", ret, errno);
exit(-1);
}
}
#if EXTRA_CHECKS_ARE_FUN
const int SENTINEL_VALUE = 0xBABA;
#endif
// This just holds the things we need to pass to the listener proc
struct uffd_wp_info
{
int fd;
#if EXTRA_CHECKS_ARE_FUN
int sentinel;
#endif
};
// TODO: make this better. Using a global for now to make lifetimes simpler.
static struct uffd_wp_info g_wp_info = {0};
void* listener_proc(void* arg)
{
uffd_wp_info* wp_info = static_cast<uffd_wp_info*>(arg);
int uffd = wp_info->fd;
#if EXTRA_CHECKS_ARE_FUN
if (wp_info->sentinel != SENTINEL_VALUE)
{
printf("ERROR: Failed sentinel check!\n");
exit(-1);
}
#endif
struct pollfd evt = {
uffd,
POLLIN,
0
};
while (poll(&evt, 1, 10) > 0)
{
if (evt.revents & (POLLERR | POLLHUP))
{
printf("ERROR: Poll Error!\n");
exit(-1);
}
struct uffd_msg fault_msg = {0};
int ret = read(uffd, &fault_msg, sizeof(fault_msg));
if (ret != sizeof(fault_msg))
{
printf("ERROR: Failed to read a UFFD event! read() returned %d, errno: %d, fd: %d\n", ret, errno, uffd);
}
if (fault_msg.event == UFFD_EVENT_PAGEFAULT)
{
uint64_t fault_addr = fault_msg.arg.pagefault.address;
// printf("Yay, UFFD caught a write at %p\n", (void*)fault_addr);
// Dirty the page in our tracker
int page_number = (fault_addr - (uint64_t)REGION_BASE) / (uint64_t)PAGE_SIZE;
PAGE_TRACKER[page_number] = (char)1;
// Now you send ioctl(uffd, UFFDIO_WRITEPROTECT, struct *uffdio_writeprotect)
// again while pagefault.mode does not have UFFDIO_WRITEPROTECT_MODE_WP set.
// This wakes up the thread which will continue to run with writes. This allows
// you to do the bookkeeping about the write in the uffd reading thread before
// the ioctl.
ret = resume_without_wp(uffd, (void*)fault_addr, PAGE_SIZE);
if (ret != 0)
{
printf("Resume failed!: %d\n", ret);
}
}
else
{
printf("Unexpected event received: %d\n", fault_msg.event);
}
}
return nullptr;
}
// TODO: proper handling of ret values
int set_up_segv_way(void* buf, uint64_t alloc_size)
{
register_segv_handler();
REGION_BASE = buf;
return protect_range_with_mprotect(buf, alloc_size);
}
// TODO: proper handling of ret values
int set_up_uffd_way(void* buf, uint64_t alloc_size)
{
REGION_BASE = buf;
int fd = 0;
if ((fd = syscall(SYS_userfaultfd, O_NONBLOCK)) == -1)
{
printf("ERROR: Initial syscall failed!\n");
return -1;
}
// https://www.kernel.org/doc/Documentation/admin-guide/mm/userfaultfd.rst
// When first opened the ``userfaultfd`` must be enabled invoking the
// ``UFFDIO_API`` ioctl specifying a ``uffdio_api.api`` value set to ``UFFD_API`` (or
// a later API version) which will specify the ``read/POLLIN`` protocol
// userland intends to speak on the ``UFFD`` and the ``uffdio_api.features``
// userland requires.
struct uffdio_api api = { .api = UFFD_API };
// The ``UFFDIO_API`` ioctl if successful (i.e. if the
// requested ``uffdio_api.api`` is spoken also by the running kernel and the
// requested features are going to be enabled) will return into
// ``uffdio_api.features`` and ``uffdio_api.ioctls`` two 64bit bitmasks of
// respectively all the available features of the read(2) protocol and
// the generic ioctl available.
if (ioctl(fd, UFFDIO_API, &api))
{
printf("ERROR: Couldn't get supported UFFD features!\n");
return -1;
}
// The ``uffdio_api.features`` bitmask returned by the ``UFFDIO_API`` ioctl
// defines what memory types are supported by the ``userfaultfd`` and what
// events, except page fault notifications, may be generated.
uint64_t supp_features = api.features;
// bool supports_missing_shmem = supp_features & UFFD_FEATURE_MISSING_SHMEM;
// bool supports_hugetlbfs = supp_features & UFFD_FEATURE_MISSING_HUGETLBFS;
bool supports_pagefault_wp = supp_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP;
if (!supports_pagefault_wp)
{
printf("ERROR: Kernel doesn't support WP with UFFD!\n");
exit(-1);
}
int ret = register_range_with_wp(fd, buf, alloc_size);
ret = protect_range(fd, buf, alloc_size);
g_wp_info = {
fd
#if EXTRA_CHECKS_ARE_FUN
, SENTINEL_VALUE
#endif
};
pthread_t thread = {0};
if (pthread_create(&thread, NULL, listener_proc, &g_wp_info))
{
printf("ERROR: listener thread creation failed!\n");
exit(-1);
}
return ret;
}
uint64_t rdtsc(){
unsigned int lo,hi;
__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
return ((uint64_t)hi << 32) | lo;
}
int initialize_page_tracker()
{
PAGE_TRACKER = new char[PAGE_COUNT];
for (int i = 0; i < PAGE_COUNT; i++)
{
PAGE_TRACKER[i] = 0;
}
return 0;
}
// Putting all the tests in here for now...
class Tests
{
public:
static bool ensure_writes_succeeded(void* buf)
{
for (uint64_t i = 0; i < ALLOC_SIZE; i++)
{
char* cur = (char*)buf;
if (cur[i] != (char)0xAD)
{
printf("Sanity test ensure_writes_succeeded failed! Buffer wasn't set correctly!\n");
printf("i = %llu, value = %d\n", i, cur[i]);
return false;
}
}
return true;
}
static bool ensure_pages_dirtied(uint64_t len)
{
for (uint64_t i = 0; i < len; i++)
{
if (PAGE_TRACKER[i] != (char)1)
{
printf("Sanity test ensure_pages_dirtied failed! Page wasn't dirtied!\n");
return false;
}
}
return true;
}
static uint64_t get_number_of_dirty_pages(uint64_t len)
{
uint64_t dirty_count = 0;
for (uint64_t i = 0; i < len; i++)
{
if (PAGE_TRACKER[i] == (char)1)
{
dirty_count++;
}
}
return dirty_count;
}
static bool perform_full_write_checks(void* buf)
{
return ensure_writes_succeeded(buf) && ensure_pages_dirtied(PAGE_COUNT);
}
};
uint64_t sequential_write_experiment(bool use_uffd)
{
void* buf = allocate_mem_with_mmap(ALLOC_SIZE);
initialize_page_tracker();
fill_with_pattern_seq(buf, 0xEE, ALLOC_SIZE);
int setup_ret;
if (use_uffd)
{
printf("Performing sequential write experiment with UFFD\n");
setup_ret = set_up_uffd_way(buf, ALLOC_SIZE);
}
else
{
printf("Performing sequential write experiment with SEGV\n");
setup_ret = set_up_segv_way(buf, ALLOC_SIZE);
}
if (setup_ret != 0)
{
printf("ERROR: setup failed!\n");
exit(-1);
}
#if USE_RDTSC
uint64_t time_start = rdtsc();
#else
auto time_start = std::chrono::high_resolution_clock::now();
#endif
// Perform sequential writes in the protected region.
fill_with_pattern_seq(buf, 0xAD, ALLOC_SIZE);
#if USE_RDTSC
uint64_t time_end = rdtsc();
uint64_t elapsed = time_end-time_start;
#else
auto time_end = std::chrono::high_resolution_clock::now();
uint64_t elapsed = std::chrono::duration_cast<std::chrono::microseconds>(time_end - time_start).count();
#endif
// Make sure it actually did what it was supposed to.
if (!Tests::perform_full_write_checks(buf))
{
printf("ERROR: Sanity checks failed!");
}
int ret = ::munmap(buf, ALLOC_SIZE);
if (ret != 0)
{
printf("ERROR: munmap Failed!\n");
}
return elapsed;
}
uint64_t random_write_experiment(bool use_uffd, int number_writes, int clean_interval = 0)
{
void* buf = allocate_mem_with_mmap(ALLOC_SIZE);
initialize_page_tracker();
fill_with_pattern_seq(buf, 0xEE, ALLOC_SIZE);
int setup_ret;
if (use_uffd)
{
printf("Performing random write experiment with UFFD. %d writes. ", number_writes);
if (clean_interval != 0)
{
printf("Reprotecting every %d writes.", clean_interval);
}
printf("\n");
setup_ret = set_up_uffd_way(buf, ALLOC_SIZE);
}
else
{
printf("Performing random write experiment with SEGV. %d writes. ", number_writes);
if (clean_interval != 0)
{
printf("Reprotecting every %d writes.", clean_interval);
}
printf("\n");
setup_ret = set_up_segv_way(buf, ALLOC_SIZE);
}
if (setup_ret != 0)
{
printf("SETUP FAILED!\n");
exit(-1);
}
#if USE_RDTSC
uint64_t time_start = rdtsc();
#else
auto time_start = std::chrono::high_resolution_clock::now();
#endif
if (clean_interval > 0)
{
int remaining_writes = number_writes;
while (remaining_writes > 0)
{
// Perform random writes in the protected region.
n_random_writes(buf, 0xAD, ALLOC_SIZE, (remaining_writes > clean_interval) ? clean_interval : remaining_writes);
remaining_writes -= clean_interval;
if (use_uffd)
{
// TODO: This is gross! Get the fd another way.
protect_range(g_wp_info.fd, buf, ALLOC_SIZE);
}
else
{
protect_range_with_mprotect(buf, ALLOC_SIZE);
}
}
}
else
{
// Perform random writes in the protected region.
n_random_writes(buf, 0xAD, ALLOC_SIZE, number_writes);
}
#if USE_RDTSC
uint64_t time_end = rdtsc();
uint64_t elapsed = time_end-time_start;
#else
auto time_end = std::chrono::high_resolution_clock::now();
uint64_t elapsed = std::chrono::duration_cast<std::chrono::microseconds>(time_end - time_start).count();
#endif
int ret = ::munmap(buf, ALLOC_SIZE);
if (ret != 0)
{
printf("ERROR: munmap Failed!\n");
}
return elapsed;
}
int main()
{
printf("Userfaultfd Test Program\n");
//
// TEST 1: Sequential writes
//
uint64_t elapsed_uffd = sequential_write_experiment(true);
uint64_t elapsed_segv = sequential_write_experiment(false);
float pct_delta = (elapsed_uffd - elapsed_segv) / (float)elapsed_segv;
printf("UFFD ticks elapsed: %" PRIu64 "u\n", elapsed_uffd);
printf("SEGV ticks elapsed: %" PRIu64 "u\n", elapsed_segv);
printf("UFFD way was %f%% %s.\n", 100.0 * pct_delta, pct_delta < 0 ? "faster" : "slower");
//
// TEST 2: 50000 random writes
//
elapsed_uffd = random_write_experiment(true, 50000);
uint64_t c_dirty_uffd = Tests::get_number_of_dirty_pages(PAGE_COUNT);
elapsed_segv = random_write_experiment(false, 50000);
uint64_t c_dirty_segv = Tests::get_number_of_dirty_pages(PAGE_COUNT);
pct_delta = (elapsed_uffd - elapsed_segv) / (float)elapsed_segv;
assert(c_dirty_segv && (c_dirty_segv == c_dirty_uffd));
printf("UFFD ticks elapsed: %" PRIu64 "u\n", elapsed_uffd);
printf("SEGV ticks elapsed: %" PRIu64 "u\n", elapsed_segv);
printf("UFFD way was %f%% %s.\n", 100.0 * pct_delta, pct_delta < 0 ? "faster" : "slower");
//
// TEST 3: 5000000 random writes, but we reprotect every 10000
//
elapsed_uffd = random_write_experiment(true, 5000000, 10000);
c_dirty_uffd = Tests::get_number_of_dirty_pages(PAGE_COUNT);
elapsed_segv = random_write_experiment(false, 5000000, 10000);
c_dirty_segv = Tests::get_number_of_dirty_pages(PAGE_COUNT);
assert(c_dirty_segv && (c_dirty_segv == c_dirty_uffd));
pct_delta = (elapsed_uffd - elapsed_segv) / (float)elapsed_segv;
printf("UFFD ticks elapsed: %" PRIu64 "u\n", elapsed_uffd);
printf("SEGV ticks elapsed: %" PRIu64 "u\n", elapsed_segv);
printf("UFFD way was %f%% %s.\n", 100.0 * pct_delta, pct_delta < 0 ? "faster" : "slower");
printf("All experiments complete.\n");
return 0;
}