-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
194 lines (159 loc) · 6.39 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
from torch import Tensor, nn, optim
from torch.utils.data import DataLoader
from transformers import AutoModel, AutoTokenizer
from typing import Callable, Dict, List, Optional
from tqdm import tqdm
from sklearn.metrics import f1_score
from accelerate import Accelerator, DistributedDataParallelKwargs
import wandb
from dataset import Dataset
from model import Hypformer
class Trainer:
def __init__(
self,
model: Hypformer,
encoder_name: str,
dataset: Dataset
) -> None:
self.accelerator = Accelerator(
split_batches=True,
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)]
)
self.encoder = AutoModel.from_pretrained(encoder_name)\
.eval().to(self.accelerator.device)
self.tokenizer = AutoTokenizer.from_pretrained(encoder_name)
self.model = self.accelerator.prepare(model)
self.dataset = dataset
self.n_label = dataset.n_label
self.graph = dataset.graph.to(self.accelerator.device)
self.mask_label = None
@staticmethod
def _create_tgt_mask(tgt: Tensor) -> Tensor:
len_seq = tgt.shape[-1]
ones = torch.ones(len_seq, len_seq, device=tgt.device)
mask = torch.triu(ones, diagonal=1).type(torch.bool)
return mask
def _forward(
self,
texts: List[str],
labels: Tensor
) -> (Tensor, Tensor):
input_ids, _, attn_mask = self.tokenizer(
texts,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=512
).to(self.accelerator.device).values()
attn_mask = attn_mask == 0
decoder_input = labels[...,:-1]
decoder_label = labels[...,1:]
mask_tgt = self._create_tgt_mask(decoder_input)
mask_label = self.graph[decoder_input] == 0 if self.mask_label else None
with torch.no_grad():
e = self.encoder(input_ids, attn_mask).last_hidden_state
logits = self.model(e, decoder_input, attn_mask, None, mask_tgt, mask_label)
return logits, decoder_label
def _init_weight(self, use_weight: bool) -> Tensor:
if use_weight:
count = torch.zeros(self.n_label)
for i in self.dataset.dataset["train"]["label"]:
count[i[1:]] += 1
count[0] = 1
weight = count.mean() / count
else:
weight = torch.ones(self.n_label)
return weight.to(self.accelerator.device)
def _create_dataset(self, which: str, batch_size: int) -> DataLoader:
loader = self.dataset.create_loader(which, batch_size)
loader = self.accelerator.prepare(loader)
return loader
def train(
self,
lr: float,
batch_size: int,
n_bb: int,
n_print: int,
n_val: int,
n_save: int,
n_iter: int,
mask_label: bool,
use_weight: bool,
save_path: Callable[[int], str],
config_wandb: Optional[Dict] = None
) -> None:
self.mask_label = mask_label
is_main = self.accelerator.is_main_process
if config_wandb is not None and is_main:
wandb.init(**config_wandb)
log = lambda x: wandb.log(x)
else:
log = lambda x: None
criterion = nn.CrossEntropyLoss(reduction="none")
optimizer = optim.Adam(self.model.parameters(), lr=lr)
optimizer = self.accelerator.prepare(optimizer)
flat_cnt = 0
loss_buffer = 0
weight = self._init_weight(use_weight)
for c in tqdm(range(n_iter)):
# dataloader
torch.manual_seed(c)
train_loader = self._create_dataset("train", batch_size)
# inner iteration
for data in train_loader:
# data
texts, labels = data["text"], data["label"]
labels = torch.stack(labels).T
# step
y_pred, labels = self._forward(texts, labels)
y_pred = y_pred.reshape(-1, self.n_label)
labels = labels.flatten()
loss = criterion(y_pred, labels)
loss = loss * weight[labels]
loss = loss.mean()
self.accelerator.backward(loss)
# batch-batch
flat_cnt += 1
if flat_cnt % n_bb == 0:
optimizer.step()
optimizer.zero_grad()
# print loss
loss_buffer += loss.item()
if flat_cnt % n_print == 0 and is_main:
loss_mean = loss_buffer / n_print
print(f"{flat_cnt: 6}: {loss_mean}")
log({"loss_mean": loss_mean})
loss_buffer = 0
# validation
if flat_cnt % n_val == 0 and is_main:
self.model.eval()
with torch.no_grad():
val_loader = self._create_dataset("validation", batch_size)
val_loader = self.accelerator.prepare(val_loader)
macro, micro = self._val(val_loader)
print(f"macro {macro}, micro {micro}")
log({"macro": macro, "micro": micro})
self.model.train()
# save model (outer iteration)
if flat_cnt % n_save == 0 and is_main:
self.accelerator.save_model(self.model, save_path(flat_cnt))
print("Model saved!")
if flat_cnt % n_save != 0 and is_main:
self.accelerator.save_model(self.model, save_path(flat_cnt))
print("Model saved!")
def _map_dataloader(self, data) -> torch.Tensor:
texts, labels = data["text"], data["label"]
labels = torch.stack(labels).T
y_pred, labels = self._forward(texts, labels)
return (y_pred.reshape(-1, self.n_label).argmax(dim=1), labels.flatten())
@torch.no_grad()
def _val(self, dataset: DataLoader) -> (float, float):
preds = torch.tensor([])
labels = torch.tensor([])
for pred, label in map(self._map_dataloader, dataset):
preds = torch.cat([preds, pred.cpu()])
labels = torch.cat([labels, label.cpu()])
macro = f1_score(preds, labels, average="macro")
micro = f1_score(preds, labels, average="micro")
return macro, micro