-
Notifications
You must be signed in to change notification settings - Fork 4
/
generate.py
84 lines (67 loc) · 2.6 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.datasets.data_utils import get_file
import numpy as np
import random, sys
path = './siddhartha.txt'
print 'opening txt'
text = open(path).read().lower().decode('utf-8')
print 'corpus length:', len(text)
chars = set(text)
print 'total chars:', len(chars)
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# cut the text in semi-redundant sequences of maxlen characters
maxlen = 20
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i : i + maxlen])
next_chars.append(text[i + maxlen])
print 'nb sequences:', len(sentences)
print 'Vectorization...'
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
X[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
# build the model: 2 stacked LSTM
print 'Build model...'
model = Sequential()
model.add(LSTM(len(chars), 512, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(512, 512, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(512, len(chars)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
# helper function to sample an index from a probability array
def sample(a, temperature=1.0):
a = np.log(a)/temperature
a = np.exp(a)/np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1,a,1))
# train the model, output generated text after each iteration
for iteration in range(1, 60):
print '-' * 50
print 'Iteration', iteration
model.fit(X, y, batch_size=128, nb_epoch=1)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [0.2, 0.5, 1.0, 1.2]:
print '----- diversity:', diversity
generated = ''
sentence = text[start_index : start_index + maxlen]
generated += sentence
print '----- Generating with seed: "' + sentence + '"'
for iteration in range(400):
x = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(sentence):
x[0, t, char_indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
print generated