Skip to content

Commit 866cce8

Browse files
committed
Add template scripts
1 parent 65a21da commit 866cce8

File tree

2 files changed

+86
-0
lines changed

2 files changed

+86
-0
lines changed

keras_script.py

+30
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,30 @@
1+
import numpy as np
2+
3+
from keras.models import Sequential
4+
from my_classes import DataGenerator
5+
6+
# Parameters
7+
params = {'dim': (32,32,32),
8+
'batch_size': 64,
9+
'n_classes': 6,
10+
'n_channels': 1,
11+
'shuffle': True}
12+
13+
# Datasets
14+
partition = {'train': ['id-1', 'id-2', 'id-3'], 'validation': ['id-4']} # IDs
15+
labels = {'id-1': 0, 'id-2': 1, 'id-3': 2, 'id-4': 1} # Labels
16+
17+
# Generators
18+
training_generator = DataGenerator(partition['train'], labels, **params)
19+
validation_generator = DataGenerator(partition['validation'], labels, **params)
20+
21+
# Design model
22+
model = Sequential()
23+
[...] # Architecture
24+
model.compile()
25+
26+
# Train model on dataset
27+
model.fit_generator(generator=training_generator,
28+
validation_data=validation_generator,
29+
use_multiprocessing=True,
30+
workers=6)

my_classes.py

+56
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
import numpy as np
2+
import keras
3+
4+
5+
class DataGenerator(keras.utils.Sequence):
6+
'Generates data for Keras'
7+
def __init__(self, list_IDs, labels, batch_size=32, dim=(32,32,32), n_channels=1,
8+
n_classes=10, shuffle=True):
9+
'Initialization'
10+
self.dim = dim
11+
self.batch_size = batch_size
12+
self.labels = labels
13+
self.list_IDs = list_IDs
14+
self.n_channels = n_channels
15+
self.n_classes = n_classes
16+
self.shuffle = shuffle
17+
self.on_epoch_end()
18+
19+
def __len__(self):
20+
'Denotes the number of batches per epoch'
21+
return int(np.floor(len(self.list_IDs) / self.batch_size))
22+
23+
def __getitem__(self, index):
24+
'Generate one batch of data'
25+
# Generate indexes of the batch
26+
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
27+
28+
# Find list of IDs
29+
list_IDs_temp = [self.list_IDs[k] for k in indexes]
30+
31+
# Generate data
32+
X, y = self.__data_generation(list_IDs_temp)
33+
34+
return X, y
35+
36+
def on_epoch_end(self):
37+
'Updates indexes after each epoch'
38+
self.indexes = np.arange(len(self.list_IDs))
39+
if self.shuffle == True:
40+
np.random.shuffle(self.indexes)
41+
42+
def __data_generation(self, list_IDs_temp):
43+
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
44+
# Initialization
45+
X = np.empty((self.batch_size, *self.dim, self.n_channels))
46+
y = np.empty((self.batch_size), dtype=int)
47+
48+
# Generate data
49+
for i, ID in enumerate(list_IDs_temp):
50+
# Store sample
51+
X[i,] = np.load('data/' + ID + '.npy')
52+
53+
# Store class
54+
y[i] = self.labels[ID]
55+
56+
return X, keras.utils.to_categorical(y, num_classes=self.n_classes)

0 commit comments

Comments
 (0)