|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Definition of submodules |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 8 | + |
| 9 | +open import Algebra.Bundles using (CommutativeRing) |
| 10 | +open import Algebra.Module.Bundles using (Module; RawModule) |
| 11 | + |
| 12 | +module Algebra.Module.Construct.Sub.Module {c ℓ cm ℓm} {R : CommutativeRing c ℓ} (M : Module R cm ℓm) where |
| 13 | + |
| 14 | +private |
| 15 | + module R = CommutativeRing R |
| 16 | + module M = Module M |
| 17 | + |
| 18 | +open import Algebra.Construct.Sub.Group M.+ᴹ-group |
| 19 | +open import Algebra.Module.Structures using (IsModule) |
| 20 | +open import Algebra.Module.Morphism.Structures using (IsModuleMonomorphism) |
| 21 | +import Algebra.Module.Morphism.ModuleMonomorphism as ModuleMonomorphism |
| 22 | +open import Level using (suc; _⊔_) |
| 23 | + |
| 24 | +record Submodule cm′ ℓm′ : Set (c ⊔ cm ⊔ ℓm ⊔ suc (cm′ ⊔ ℓm′)) where |
| 25 | + field |
| 26 | + Sub : RawModule R.Carrier cm′ ℓm′ |
| 27 | + |
| 28 | + private |
| 29 | + module Sub = RawModule Sub |
| 30 | + |
| 31 | + field |
| 32 | + ι : Sub.Carrierᴹ → M.Carrierᴹ |
| 33 | + ι-monomorphism : IsModuleMonomorphism Sub M.rawModule ι |
| 34 | + |
| 35 | + module ι = IsModuleMonomorphism ι-monomorphism |
| 36 | + |
| 37 | + isModule : IsModule R Sub._≈ᴹ_ Sub._+ᴹ_ Sub.0ᴹ Sub.-ᴹ_ Sub._*ₗ_ Sub._*ᵣ_ |
| 38 | + isModule = ModuleMonomorphism.isModule ι-monomorphism R.isCommutativeRing M.isModule |
| 39 | + |
| 40 | + ⟨module⟩ : Module R _ _ |
| 41 | + ⟨module⟩ = record { isModule = isModule } |
| 42 | + |
| 43 | + open Module ⟨module⟩ public hiding (isModule) |
| 44 | + |
| 45 | + subgroup : Subgroup cm′ ℓm′ |
| 46 | + subgroup = record |
| 47 | + { N = Sub.+ᴹ-rawGroup |
| 48 | + ; ι = ι |
| 49 | + ; ι-monomorphism = ι.+ᴹ-isGroupMonomorphism |
| 50 | + } |
0 commit comments