File tree Expand file tree Collapse file tree 2 files changed +13
-9
lines changed
Expand file tree Collapse file tree 2 files changed +13
-9
lines changed Original file line number Diff line number Diff line change @@ -10,26 +10,30 @@ module Axiom.DoubleNegationElimination where
1010
1111open import Axiom.ExcludedMiddle
1212open import Level
13- open import Relation.Nullary
14- open import Relation.Nullary.Negation
15- open import Relation.Nullary.Decidable
13+ open import Relation.Nullary.Decidable.Core
14+ using (decidable-stable; ¬¬-excluded-middle)
15+ open import Relation.Nullary.Negation.Core using (Stable)
16+
17+ private
18+ variable
19+ ℓ : Level
1620
1721------------------------------------------------------------------------
1822-- Definition
1923
2024-- The classical statement of double negation elimination says that
2125-- if a property is not not true then it is true.
2226
23- DoubleNegationElimination : (ℓ : Level) → Set (suc ℓ)
24- DoubleNegationElimination ℓ = {P : Set ℓ} → ¬ ¬ P → P
27+ DoubleNegationElimination : ∀ ℓ → Set (suc ℓ)
28+ DoubleNegationElimination ℓ = {P : Set ℓ} → Stable P
2529
2630------------------------------------------------------------------------
2731-- Properties
2832
2933-- Double negation elimination is equivalent to excluded middle
3034
31- em⇒dne : ∀ {ℓ} → ExcludedMiddle ℓ → DoubleNegationElimination ℓ
35+ em⇒dne : ExcludedMiddle ℓ → DoubleNegationElimination ℓ
3236em⇒dne em = decidable-stable em
3337
34- dne⇒em : ∀ {ℓ} → DoubleNegationElimination ℓ → ExcludedMiddle ℓ
38+ dne⇒em : DoubleNegationElimination ℓ → ExcludedMiddle ℓ
3539dne⇒em dne = dne ¬¬-excluded-middle
Original file line number Diff line number Diff line change 99module Axiom.ExcludedMiddle where
1010
1111open import Level
12- open import Relation.Nullary
12+ open import Relation.Nullary.Decidable.Core using (Dec)
1313
1414------------------------------------------------------------------------
1515-- Definition
1616
1717-- The classical statement of excluded middle says that every
1818-- statement/set is decidable (i.e. it either holds or it doesn't hold).
1919
20- ExcludedMiddle : (ℓ : Level) → Set (suc ℓ)
20+ ExcludedMiddle : ∀ ℓ → Set (suc ℓ)
2121ExcludedMiddle ℓ = {P : Set ℓ} → Dec P
You can’t perform that action at this time.
0 commit comments