-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_controller.py
223 lines (199 loc) · 8.09 KB
/
main_controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
from ocsort import (
KalmanBoxTracker,
associate,
ciou_batch,
ct_dist,
diou_batch,
giou_batch,
iou_batch,
linear_assignment,
)
from onnx_models import HandClassification, HandDetection
from utils import Deque, Drawer, Hand
ASSO_FUNCS = {"iou": iou_batch, "giou": giou_batch, "ciou": ciou_batch, "diou": diou_batch, "ct_dist": ct_dist}
def k_previous_obs(observations, cur_age, k):
if len(observations) == 0:
return [-1, -1, -1, -1, -1]
for i in range(k):
dt = k - i
if cur_age - dt in observations:
return observations[cur_age - dt]
max_age = max(observations.keys())
return observations[max_age]
class MainController:
"""
Main tracking function.
Class contains a list of tracks, each track contains a KalmanBoxTracker object and a Deque object with Hand objects.
"""
def __init__(
self, detection_model, classification_model, max_age=30, min_hits=3, iou_threshold=0.3, maxlen=30, min_frames=20
):
"""
Parameters
----------
detection_model : str
Path to detection model.
classification_model : str
Path to classification model.
max_age : int
Maximum age of track.
min_hits : int
Minimum number of hits to confirm track.
iou_threshold : float
IOU threshold for track association.
maxlen : int
Maximum length of deque in track.
min_frames : int
Minimum number of frames to confirm track.
"""
self.maxlen = maxlen
self.min_frames = min_frames
self.max_age = max_age
self.min_hits = min_hits
self.delta_t = 3
self.iou_threshold = iou_threshold
self.inertia = 0.2
self.asso_func = ASSO_FUNCS["giou"]
self.tracks = []
self.frame_count = 0
self.detection_model = HandDetection(detection_model)
self.classification_model = HandClassification(classification_model)
self.drawer = Drawer()
def update(self, dets=np.empty((0, 5)), labels=None):
"""
Parameters
----------
dets : np.array
Bounding boxes with shape [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] .
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
labels : np.array
Labels with shape (N, 1) where N is number of bounding boxes.
Returns
-------
np.array
Returns the similar array, where the last column is the object ID.
Notes
-----
The number of objects returned may differ from the number of detections provided.
"""
if len(dets) == 0:
for trk in self.tracks:
trk["hands"].append(Hand(bbox=None, gesture=None))
return
self.frame_count += 1
# get predicted locations from existing trackers.
trks = np.zeros((len(self.tracks), 5))
to_del = []
ret = []
lbs = []
for t, trk in enumerate(trks):
pos = self.tracks[t]["tracker"].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if np.any(np.isnan(pos)):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.tracks.pop(t)
velocities = np.array(
[
trk["tracker"].velocity if trk["tracker"].velocity is not None else np.array((0, 0))
for trk in self.tracks
]
)
last_boxes = np.array([trk["tracker"].last_observation for trk in self.tracks])
k_observations = np.array(
[k_previous_obs(trk["tracker"].observations, trk["tracker"].age, self.delta_t) for trk in self.tracks]
)
"""
First round of association
"""
matched, unmatched_dets, unmatched_trks = associate(
dets, trks, self.iou_threshold, velocities, k_observations, self.inertia
)
for m in matched:
self.tracks[m[1]]["tracker"].update(dets[m[0], :])
self.tracks[m[1]]["hands"].append(Hand(bbox=dets[m[0], :4], gesture=labels[m[0]]))
"""
Second round of associaton by OCR
"""
if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0:
left_dets = dets[unmatched_dets]
left_trks = last_boxes[unmatched_trks]
iou_left = self.asso_func(left_dets, left_trks)
iou_left = np.array(iou_left)
if iou_left.max() > self.iou_threshold:
"""
NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may
get a higher performance especially on MOT17/MOT20 datasets. But we keep it
uniform here for simplicity
"""
rematched_indices = linear_assignment(-iou_left)
to_remove_det_indices = []
to_remove_trk_indices = []
for m in rematched_indices:
det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[1]]
if iou_left[m[0], m[1]] < self.iou_threshold:
continue
self.tracks[trk_ind]["tracker"].update(dets[det_ind, :])
self.tracks[trk_ind]["hands"].append(Hand(bbox=dets[det_ind, :4], gesture=labels[det_ind]))
to_remove_det_indices.append(det_ind)
to_remove_trk_indices.append(trk_ind)
unmatched_dets = np.setdiff1d(unmatched_dets, np.array(to_remove_det_indices))
unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices))
for m in unmatched_trks:
self.tracks[m]["tracker"].update(None)
self.tracks[m]["hands"].append(Hand(bbox=None, gesture=None))
# create and initialise new trackers for unmatched detections
for i in unmatched_dets:
self.tracks.append(
{
"hands": Deque(self.maxlen, self.min_frames),
"tracker": KalmanBoxTracker(dets[i, :], delta_t=self.delta_t),
}
)
i = len(self.tracks)
for trk in reversed(self.tracks):
if trk["tracker"].last_observation.sum() < 0:
d = trk["tracker"].get_state()[0]
else:
"""
this is optional to use the recent observation or the kalman filter prediction,
we didn't notice significant difference here
"""
d = trk["tracker"].last_observation[:4]
if (trk["tracker"].time_since_update < 1) and (
trk["tracker"].hit_streak >= self.min_hits or self.frame_count <= self.min_hits
):
# +1 as MOT benchmark requires positive
ret.append(np.concatenate((d, [trk["tracker"].id + 1])).reshape(1, -1))
if len(trk["hands"]) > 0:
lbs.append(trk["hands"][-1].gesture)
else:
lbs.append(None)
i -= 1
# remove dead tracklet
if trk["tracker"].time_since_update > self.max_age:
self.tracks.pop(i)
if len(ret) > 0:
return np.concatenate(ret), lbs
return np.empty((0, 5)), np.empty((0, 1))
def __call__(self, frame):
"""
Parameters
----------
frame : np.array
Image frame with shape (H, W, 3).
Returns
-------
list of np.array
"""
bboxes, probs = self.detection_model(frame)
if len(bboxes):
labels = self.classification_model(frame, bboxes)
bboxes = np.concatenate((bboxes, np.expand_dims(probs, axis=1)), axis=1)
new_bboxes, labels = self.update(dets=bboxes, labels=labels)
return new_bboxes[:, :-1], new_bboxes[:, -1], labels
else:
self.update(np.empty((0, 5)), None)
return None, None, None