-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_model.py
464 lines (398 loc) · 15.6 KB
/
load_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# import torch
class ModelInfo:
def __init__(self, model, criterion, optimizer, name):
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.name = name
self.loss = None
self.accuracy = None
self.batch_size = None
self.train_loss = []
self.train_accuracy = []
self.test_loss = []
self.test_accuracy = []
def __repr__(self):
return self.name
# import models
import torch
import torch.nn as nn
import math
import torch.autograd as autograd
import torch.nn.functional as F
from torch.distributions.normal import Normal
device = torch.device(f"cuda:0") if torch.cuda.is_available() else 'cpu'
norm_mean, norm_var = 0.0, 1.0
cfg = {'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']}
class_cfg = []
class VGG(nn.Module):
def __init__(self, builder, vgg_name, layer_cfg=None, num_classes=100):
super(VGG, self).__init__()
self.layer_cfg = layer_cfg
self.cfg_index = 0
self.features = self._make_layers(builder,cfg[vgg_name])
self.classifier = builder.conv1x1_fc(512, num_classes)
#self._initialize_weights()
def forward(self, x):
out = self.features(x)
out = self.classifier(out)
return out.flatten(1)
def _make_layers(self, builder, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
x = x if self.layer_cfg is None else self.layer_cfg[self.cfg_index]
layers += [builder.conv3x3(in_channels,
x),
builder.batchnorm(x),
builder.activation()]
in_channels = x
self.cfg_index += 1
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
class Builder(object):
def __init__(self, conv_layer, bn_layer):
self.conv_layer = conv_layer
self.bn_layer = bn_layer
def conv(self, kernel_size, in_planes, out_planes, stride=1, bias=False):
conv_layer = self.conv_layer
if kernel_size == 3:
conv = conv_layer(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=bias,
)
elif kernel_size == 1:
conv = conv_layer(
in_planes, out_planes, kernel_size=1, stride=stride, bias=bias
)
elif kernel_size == 5:
conv = conv_layer(
in_planes,
out_planes,
kernel_size=5,
stride=stride,
padding=2,
bias=bias,
)
elif kernel_size == 7:
conv = conv_layer(
in_planes,
out_planes,
kernel_size=7,
stride=stride,
padding=3,
bias=bias,
)
else:
return None
return conv
def conv2d(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode="zeros",
):
return self.conv_layer(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
)
def conv3x3(self, in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
c = self.conv(3, in_planes, out_planes, stride=stride)
return c
def conv1x1(self, in_planes, out_planes, stride=1):
"""1x1 convolution with padding"""
c = self.conv(1, in_planes, out_planes, stride=stride)
return c
def conv1x1_fc(self, in_planes, out_planes, stride=1):
"""full connect layer"""
c = self.conv(1, in_planes, out_planes, stride=stride, bias=True)
return c
def conv7x7(self, in_planes, out_planes, stride=1):
"""7x7 convolution with padding"""
c = self.conv(7, in_planes, out_planes, stride=stride)
return c
def conv5x5(self, in_planes, out_planes, stride=1):
"""5x5 convolution with padding"""
c = self.conv(5, in_planes, out_planes, stride=stride)
return c
def batchnorm(self, planes, last_bn=False):
return self.bn_layer(planes)
def activation(self):
return (lambda: nn.ReLU(inplace=True))()
LearnedBatchNorm = nn.BatchNorm2d
class NonAffineBatchNorm(nn.BatchNorm2d):
def __init__(self, dim):
super(NonAffineBatchNorm, self).__init__(dim, affine=False)
DenseConv = nn.Conv2d
class GetMask(autograd.Function):
@staticmethod
def forward(ctx, mask, b_mask):
return b_mask
@staticmethod
def backward(ctx, g):
# send the gradient g straight-through on the backward pass.
return g, None
class PretrainConv(nn.Conv2d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.mask = nn.Parameter(torch.ones(self.weight.shape, device=device))
self.b_mask = nn.Parameter(torch.ones(self.weight.shape, requires_grad=False, device=device))
def forward(self, x):
mask = GetMask.apply(self.mask, self.b_mask)
sparseWeight = mask * self.weight
x = F.conv2d(
x, sparseWeight, self.bias, self.stride, self.padding, self.dilation, self.groups
)
return x
def set_prune_rate(self, prune_rate):
self.prune_rate = prune_rate
w = self.weight.detach().cpu()
w = w.view(-1) #c_out * (c_in * k * k) -> 4 * (c_out * c_in * k * k / 4)
m = self.mask.detach().cpu()
m = m.view(-1)
b_m = self.b_mask.detach().cpu()
b_m = b_m.view(-1)
#import pdb; pdb.set_trace()
_, indice = torch.topk(torch.abs(w), int(w.size(0)*prune_rate), largest=False)
b_m[indice] = 0
m[indice] = 0.99
self.b_mask = nn.Parameter(b_m.view(self.weight.shape), requires_grad=False)
self.mask = nn.Parameter(m.view(self.weight.shape))
def get_builder(conv_layer=PretrainConv, bn_layer=LearnedBatchNorm):
builder = Builder(conv_layer=conv_layer, bn_layer=bn_layer)
return builder
def get_prune_rate(model, pr_cfg):
all_params = 0
prune_params = 0
i = 0
for name, module in model.named_modules():
if hasattr(module, "set_prune_rate"):
w = module.weight.data.detach().cpu()
params = w.size(0) * w.size(1) * w.size(2) * w.size(3)
all_params = all_params + params
prune_params += int(params * pr_cfg[i])
i += 1
print('Params Compress Rate: %.2f M/%.2f M(%.2f%%)' % ((all_params-prune_params)/1000000, all_params/1000000, 100. * prune_params / all_params))
def generate_pr_cfg(model):
pr_cfg = []
weights = []
for name, module in model.named_modules():
if hasattr(module, "set_prune_rate") and name != 'fc' and name != 'classifier':
conv_weight = module.weight.data.detach().cpu()
weights.append(conv_weight.view(-1))
all_weights = torch.cat(weights,0)
preserve_num = int(all_weights.size(0) * (1 - 0.9))
preserve_weight, _ = torch.topk(torch.abs(all_weights), preserve_num)
threshold = preserve_weight[preserve_num-1]
#Based on the pruning threshold, the prune cfg of each layer is obtained
for weight in weights:
pr_cfg.append(torch.sum(torch.lt(torch.abs(weight),threshold)).item()/weight.size(0))
pr_cfg.append(0)
get_prune_rate(model, pr_cfg)
return pr_cfg
def get_model(fn, conv_layer=PretrainConv, bn_layer=LearnedBatchNorm):
arch = 'vgg19_cifar10'
print("=> Creating model '{}'".format(arch))
model = VGG(get_builder(conv_layer, bn_layer), num_classes=10, vgg_name='vgg19').to(device)
ckpt = torch.load(fn, map_location=device)
#import pdb;pdb.set_trace()
model.load_state_dict(ckpt['state_dict'], strict=False)
model = model.to(device)
return model
def get_model_pruned(fn):
pr_cfg = []
arch = 'vgg19_cifar10'
print("=> Creating model '{}'".format(arch))
model = VGG(get_builder(), num_classes=10, vgg_name='vgg19').to(device)
ckpt = torch.load('./saved_models/vgg19_cifar10.pt', map_location=device)
#import pdb;pdb.set_trace()
model.load_state_dict(ckpt['state_dict'], strict=False)
pr_cfg = generate_pr_cfg(model)
model = VGG(get_builder(), num_classes=10, vgg_name='vgg19').to(device)
i = 0
for n, m in model.named_modules():
if hasattr(m, "set_prune_rate"):
m.set_prune_rate(pr_cfg[i])
# m.set_prune_rate(0.9)
i += 1
model = model.to(device)
model.load_state_dict(torch.load(fn)["state_dict"])
return model
import math
import torch
import torch.nn as nn
# from .init_utils import weights_init
defaultcfg = {
11: [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512],
13: [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512],
16: [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512],
19: [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512],
}
class Mask(nn.Module):
def __init__(self, init_value=[1], fc=False):
super().__init__()
self.weight = nn.Parameter(torch.Tensor(init_value))
self.fc = fc
def forward(self, input):
if self.fc:
weight = self.weight
else:
weight = self.weight[None, :, None, None]
return input * weight
class GraSP_VGG(nn.Module):
def __init__(self, dataset='cifar10', depth=19, init_weights=True, cfg=None, affine=True, batchnorm=True, is_sparse=False, is_mask=False):
super(GraSP_VGG, self).__init__()
if cfg is None:
cfg = defaultcfg[depth]
self._AFFINE = affine
self.dataset = dataset
num_classes = 10
if is_sparse:
self.feature = self.make_sparse_layers(cfg, batchnorm)
self.classifier = nn.Linear(cfg[-1], num_classes)
elif is_mask:
self.feature = self.make_mask_layers(cfg, batchnorm)
self.classifier = nn.Linear(cfg[-1], num_classes)
else:
self.feature = self.make_layers(cfg, batchnorm)
self.classifier = nn.Linear(cfg[-1], num_classes)
def make_layers(self, cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=False)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v, affine=self._AFFINE), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
def make_mask_layers(self, cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = PretrainConv(in_channels, v, kernel_size=3, padding=1, bias=False)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v, affine=self._AFFINE), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
def make_sparse_layers(self, cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=False)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v, affine=self._AFFINE), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
m = Normal(torch.tensor([norm_mean]*int(v)), torch.tensor([norm_var]*int(v))).sample()
init_value = m
layers += [Mask(init_value)]
in_channels = v
return nn.Sequential(*layers)
def forward(self, x):
x = self.feature(x)
x = nn.AvgPool2d(2)(x)
x = x.view(x.size(0), -1)
y = self.classifier(x)
return y
def get_GraSP_VGG(fn, cfg=None):
model = GraSP_VGG(cfg=cfg).to(device)
ckpt = torch.load(fn)
model.load_state_dict(ckpt, strict=False)
return model.to(device)
def get_pretrain_grasp(fn):
model = GraSP_VGG().to(device)
ckpt = torch.load(fn).state_dict()
model.load_state_dict(ckpt, strict=False)
return model.to(device)
def get_GAL_VGG(fn):
model = GraSP_VGG(is_sparse=True).to(device)
ckpt = torch.load(fn)
model.load_state_dict(ckpt['state_dict_s'], strict=True)
return model.to(device)
def get_lottery_VGG(fn):
model = GraSP_VGG(is_mask=True).to(device)
ckpt = torch.load(fn)
model.load_state_dict(ckpt['state_dict'], strict=True)
return model.to(device)
def get_prune_scratch_VGG(fn, cfg=None):
cpkt = torch.load(fn)
cfg = []
for i in range(20):
if 'feature.{}.conv.weight'.format(i) in cpkt.keys():
cfg.append(cpkt['feature.{}.conv.weight'.format(i)].shape[0])
if i in [2, 4, 9, 14]:
cfg.append('M')
new_dict = {}
prev = 'conv'
prev_num = 0
cnt = 0
for k, v in cpkt.items():
if 'feature' in k and k.split('.')[2] != prev:
prev = k.split('.')[2]
cnt += 1
if 'conv' in k:
cnt += 1
if 'feature' in k:
if int(k.split('.')[1]) - prev_num == 2:
cnt += 1
prev_num = int(k.split('.')[1])
new_dict['feature.{}.{}'.format(cnt, k.split('.')[3])] = v
else:
new_dict[k] = v
model = GraSP_VGG(cfg=cfg).to(device)
model.load_state_dict(new_dict, strict=False)
return model.to(device)
def get_attribute_preserve_VGG(fn, cfg=None):
model = GraSP_VGG(cfg=cfg).to(device)
ckpt = torch.load(fn)
new_dict = {}
for k, v in ckpt['state_dict'].items():
new_dict[k[7:]] = v
model.load_state_dict(new_dict, strict=True)
return model.to(device)