-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_training_color.py
executable file
·212 lines (177 loc) · 6.86 KB
/
keras_training_color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
'''Train a simple deep CNN on the CIFAR10 small images dataset.
It gets to 75% validation accuracy in 25 epochs, and 79% after 50 epochs.
(it's still underfitting at that point, though).
'''
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os
import glob
import cv2
import numpy as np
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
'''
@author:Ajinkya Khoche
# of classes Based on "Object dataset" in Modules
0: Yellow
1: Green
2: Orange
3: Red
4: Blue
5: Purple
'''
batch_size = 32
num_classes = 7
epochs = 100
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_RAS_model_color_3.h5'
PATH_DATA = "../image_dataset_keras_color/"
color_class = ['Yellow', 'Green', 'Orange', 'Red', 'Blue', 'Purple', 'Nothing']
def load_custom_data():
x_list = []
y_list = []
# x_test_list = []
# y_test_list = []
### LOAD TEST DATA ###
print('########## LOADING DATA ##########')
for dirname in os.listdir(PATH_DATA):
if dirname == 'Yellow':
label = 0
elif dirname == 'Green':
label = 1
elif dirname == 'Orange':
label = 2
elif dirname == 'Red':
label = 3
elif dirname == 'Blue':
label = 4
elif dirname == 'Purple':
label = 5
elif dirname == 'Nothing':
label = 6
print('########## ' + dirname + ' , Label : ' + str(label) + ' ##########')
for file in glob.glob(PATH_DATA + dirname + "/*.jpg"):
image = cv2.imread(file)
x_list.append(cv2.resize(image, (32,32)))
y_list.append(label)
x_arr = np.array(x_list)
y_arr = np.reshape(np.array(y_list), (-1,1))
x_train, x_test, y_train, y_test = train_test_split(x_arr, y_arr, test_size=0.4, random_state=0)
return (x_train, y_train), (x_test, y_test)
# The data, split between train and test sets:
#(x_train, y_train), (x_test, y_test) = cifar10.load_data()
(x_train, y_train), (x_test, y_test) = load_custom_data()
#load_custom_data()
# Shuffle data to randomize
# (x_train, y_train) = shuffle(x_tr, y_tr, random_state=0)
# (x_test, y_test) = shuffle(x_te, y_te, random_state=0)
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# model.add(Conv2D(64, (3, 3), padding='same'))
# model.add(Activation('relu'))
# model.add(Conv2D(64, (3, 3)))
# model.add(Activation('relu'))
# model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# randomly shift images horizontally (fraction of total width)
width_shift_range=0.1,
# randomly shift images vertically (fraction of total height)
height_shift_range=0.1,
shear_range=0., # set range for random shear
zoom_range=0., # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
# set mode for filling points outside the input boundaries
fill_mode='nearest',
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
workers=4)
# Save model and weights
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
for file in glob.glob('../RAS_DATASET'+ "/*.jpg"):
image = cv2.imread(file)
input_img = []
input_img.append(cv2.resize(image, (32,32)))
input_img = np.array(input_img)
prediction = model.predict(input_img)
#print('Actual: ' + str(dirname) + ' detected: ' + shape_class[np.argmax(prediction)])
print('detected: ' + color_class[np.argmax(prediction)])
cv2.imshow('image', cv2.resize(image, (640,480)))
cv2.waitKey(3000)