-
Notifications
You must be signed in to change notification settings - Fork 242
/
Copy pathBinaryTreeMaximumPathSum.cpp
85 lines (69 loc) · 2.47 KB
/
BinaryTreeMaximumPathSum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/* Problem Statement ->
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path. Given the root of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
The number of nodes in the tree is in the range [1, 3 * 104].
-1000 <= Node.val <= 1000
*/
/* Code -> */
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
#include <iostream>
#include <algorithm>
#include <climits> // Add this include for INT_MIN
using namespace std;
// Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
int maxPathSum(TreeNode* root) {
int maxSum = INT_MIN;
calculateMaxPathSum(root, maxSum);
return maxSum;
}
int calculateMaxPathSum(TreeNode* node, int& maxSum) {
if (!node) return 0;
int leftMax = max(0, calculateMaxPathSum(node->left, maxSum));
int rightMax = max(0, calculateMaxPathSum(node->right, maxSum));
maxSum = max(maxSum, node->val + leftMax + rightMax);
return node->val + max(leftMax, rightMax);
}
};
int main() {
// Example 1
TreeNode* root1 = new TreeNode(1);
root1->left = new TreeNode(2);
root1->right = new TreeNode(3);
Solution solution;
cout << "Example 1: " << solution.maxPathSum(root1) << endl;
// Example 2
TreeNode* root2 = new TreeNode(-10);
root2->left = new TreeNode(9);
root2->right = new TreeNode(20);
root2->right->left = new TreeNode(15);
root2->right->right = new TreeNode(7);
cout << "Example 2: " << solution.maxPathSum(root2) << endl;
return 0;
}