Skip to content

NAN prediction #8

@dannyFung

Description

@dannyFung

When I used it for classification, my prediction is all nan values.

model = ffm.FFM(eta=0.1, lam=0.0001, k=4)
model.init_model(ffm_train_data)
for i in range(n_iter):
    print('iteration %d, ' % i, end='')
    model.iteration(ffm_train_data)
    train_y_pred = model.predict(ffm_train_data)
    print(train_y_pred.shape)
    print(train_y_pred)
    train_auc = roc_auc_score(np.array(train_y_class), train_y_pred)
    test_y_pred = model.predict(ffm_test_data)
    test_auc = roc_auc_score(np.array(test_y_class), test_y_pred)
    print('train auc %.4f' % train_auc,'test auc %.4f' % test_auc)
[nan nan nan ... nan nan nan]

I've no idea why this happen, I can only change the ffm.FFM() function parameters of eta, lam and k. Any idea or suggestion?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions