|
| 1 | +import gc |
| 2 | +import os |
| 3 | +import unittest |
| 4 | + |
| 5 | +import ray |
| 6 | +import torch |
| 7 | +from ray.util import queue as ray_queue |
| 8 | +from transformers import AutoTokenizer |
| 9 | +from vllm import SamplingParams |
| 10 | + |
| 11 | +from open_instruct import utils |
| 12 | +from open_instruct.queue_types import GenerationResult, PromptRequest |
| 13 | +from open_instruct.vllm_utils3 import create_vllm_engines |
| 14 | + |
| 15 | + |
| 16 | +class TestGrpoFastGPUBase(unittest.TestCase): |
| 17 | + """Base class with common test utilities for GPU tests.""" |
| 18 | + |
| 19 | + def _get_resource_tracker_state(self): |
| 20 | + """Get current resource tracker state for debugging.""" |
| 21 | + tracked_resources = {} |
| 22 | + try: |
| 23 | + # Try to access resource tracker directly |
| 24 | + from multiprocessing.resource_tracker import _resource_tracker |
| 25 | + |
| 26 | + if hasattr(_resource_tracker, "_cache"): |
| 27 | + for name, rtype in list(_resource_tracker._cache.items()): |
| 28 | + if rtype not in tracked_resources: |
| 29 | + tracked_resources[rtype] = [] |
| 30 | + tracked_resources[rtype].append(name) |
| 31 | + except Exception: |
| 32 | + # Alternative approach: check via resource_tracker module |
| 33 | + try: |
| 34 | + import multiprocessing.resource_tracker as rt |
| 35 | + |
| 36 | + if hasattr(rt, "getfd"): |
| 37 | + # This is a hack to get the cache info |
| 38 | + |
| 39 | + # Try to find the cache in the module |
| 40 | + for attr_name in dir(rt): |
| 41 | + attr = getattr(rt, attr_name) |
| 42 | + if isinstance(attr, dict) and any("semaphore" in str(v) for v in attr.values()): |
| 43 | + for k, v in attr.items(): |
| 44 | + if v not in tracked_resources: |
| 45 | + tracked_resources[v] = [] |
| 46 | + tracked_resources[v].append(k) |
| 47 | + except Exception: |
| 48 | + pass |
| 49 | + return tracked_resources |
| 50 | + |
| 51 | + def setUp(self): |
| 52 | + """Initialize Ray and check for pre-existing leaks.""" |
| 53 | + # Check if CUDA is available |
| 54 | + if not torch.cuda.is_available(): |
| 55 | + self.skipTest("CUDA is not available, skipping test") |
| 56 | + |
| 57 | + # Save original environment variable value |
| 58 | + self._original_nccl_cumem = os.environ.get("NCCL_CUMEM_ENABLE") |
| 59 | + |
| 60 | + # Record initial resource tracker state |
| 61 | + self._initial_resources = self._get_resource_tracker_state() |
| 62 | + |
| 63 | + # Track Ray queues for cleanup |
| 64 | + self._ray_queues = [] |
| 65 | + |
| 66 | + # Check for leaks after Ray init |
| 67 | + leak_report = utils.check_runtime_leaks() |
| 68 | + # After Ray init, we expect exactly one Ray head worker |
| 69 | + if len(leak_report.ray_workers) == 1: |
| 70 | + # Check if it's the head worker (worker ID all zeros or all f's) |
| 71 | + worker = leak_report.ray_workers[0] |
| 72 | + worker_id = worker.get("worker_id", "") |
| 73 | + if worker_id in [ |
| 74 | + "01000000ffffffffffffffffffffffffffffffffffffffffffffffff", |
| 75 | + "00000000ffffffffffffffffffffffffffffffffffffffffffffffff", |
| 76 | + ]: |
| 77 | + # This is the expected Ray head worker, clear it |
| 78 | + leak_report.ray_workers = [] |
| 79 | + |
| 80 | + if not leak_report.is_clean: |
| 81 | + self.fail(f"Leaks detected before test {self._testMethodName}:\n{leak_report.pretty()}") |
| 82 | + |
| 83 | + # Initialize Ray for this test |
| 84 | + ray.init(include_dashboard=False) |
| 85 | + |
| 86 | + def _cleanup_ray_queues(self): |
| 87 | + """Clean up all Ray queues created during the test.""" |
| 88 | + for queue in self._ray_queues: |
| 89 | + try: |
| 90 | + queue.shutdown() |
| 91 | + except Exception as e: |
| 92 | + print(f"Warning: Failed to shutdown Ray queue: {e}") |
| 93 | + self._ray_queues.clear() |
| 94 | + |
| 95 | + def tearDown(self): |
| 96 | + """Check for leaks and shutdown Ray.""" |
| 97 | + # Clean up Ray queues BEFORE shutting down Ray |
| 98 | + self._cleanup_ray_queues() |
| 99 | + |
| 100 | + # Shutdown Ray |
| 101 | + if ray.is_initialized(): |
| 102 | + ray.shutdown() |
| 103 | + |
| 104 | + # Force garbage collection to clean up any lingering objects |
| 105 | + gc.collect() |
| 106 | + |
| 107 | + # Get final resource tracker state |
| 108 | + final_resources = self._get_resource_tracker_state() |
| 109 | + |
| 110 | + # Check for new resources that weren't there initially |
| 111 | + new_resources = {} |
| 112 | + for rtype, names in final_resources.items(): |
| 113 | + initial_names = set(self._initial_resources.get(rtype, [])) |
| 114 | + new_names = [n for n in names if n not in initial_names] |
| 115 | + if new_names: |
| 116 | + new_resources[rtype] = new_names |
| 117 | + |
| 118 | + # Check for leaks before shutdown |
| 119 | + leak_report = utils.check_runtime_leaks() |
| 120 | + # We still expect the Ray head worker |
| 121 | + if len(leak_report.ray_workers) == 1: |
| 122 | + worker = leak_report.ray_workers[0] |
| 123 | + worker_id = worker.get("worker_id", "") |
| 124 | + if worker_id in [ |
| 125 | + "01000000ffffffffffffffffffffffffffffffffffffffffffffffff", |
| 126 | + "00000000ffffffffffffffffffffffffffffffffffffffffffffffff", |
| 127 | + ]: |
| 128 | + # This is the expected Ray head worker, clear it |
| 129 | + leak_report.ray_workers = [] |
| 130 | + |
| 131 | + if not leak_report.is_clean: |
| 132 | + self.fail(f"Leaks detected after test {self._testMethodName}:\n{leak_report.pretty()}") |
| 133 | + |
| 134 | + # Check for semaphore leaks |
| 135 | + if new_resources: |
| 136 | + # Report all new resources, especially semaphores |
| 137 | + leak_msg = f"Resource leaks detected after test {self._testMethodName}:\n" |
| 138 | + for rtype, names in new_resources.items(): |
| 139 | + leak_msg += f" {rtype}: {names}\n" |
| 140 | + |
| 141 | + # Fail if there are semaphore leaks |
| 142 | + if "semaphore" in new_resources: |
| 143 | + self.fail(leak_msg) |
| 144 | + |
| 145 | + # Restore original environment variable value |
| 146 | + if self._original_nccl_cumem is None: |
| 147 | + os.environ.pop("NCCL_CUMEM_ENABLE", None) |
| 148 | + else: |
| 149 | + os.environ["NCCL_CUMEM_ENABLE"] = self._original_nccl_cumem |
| 150 | + |
| 151 | + |
| 152 | +class TestGrpoFastVLLMGPU(TestGrpoFastGPUBase): |
| 153 | + def test_vllm_queue_system_single_prompt(self): |
| 154 | + """Test the new queue-based vLLM system with a single prompt 'What is the capital of France?'""" |
| 155 | + # Set up tokenizer |
| 156 | + tokenizer_name = "EleutherAI/pythia-14m" # Using a small model for testing |
| 157 | + tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) |
| 158 | + |
| 159 | + # Tokenize the test prompt |
| 160 | + test_prompt = "What is the capital of France?" |
| 161 | + prompt_token_ids = tokenizer.encode(test_prompt, return_tensors="pt").tolist()[0] |
| 162 | + |
| 163 | + # Create Ray queues |
| 164 | + param_prompt_Q = ray_queue.Queue(maxsize=1) |
| 165 | + inference_results_Q = ray_queue.Queue(maxsize=1) |
| 166 | + |
| 167 | + # Track queues for cleanup |
| 168 | + self._ray_queues.extend([param_prompt_Q, inference_results_Q]) |
| 169 | + |
| 170 | + # Create vLLM engines with queues |
| 171 | + _ = create_vllm_engines( |
| 172 | + num_engines=1, |
| 173 | + tensor_parallel_size=1, |
| 174 | + enforce_eager=True, |
| 175 | + tokenizer_name_or_path=tokenizer_name, |
| 176 | + pretrain=tokenizer_name, |
| 177 | + revision="main", |
| 178 | + seed=42, |
| 179 | + enable_prefix_caching=False, |
| 180 | + max_model_len=512, |
| 181 | + vllm_gpu_memory_utilization=0.5, # Use less GPU memory for testing |
| 182 | + prompt_queue=param_prompt_Q, |
| 183 | + results_queue=inference_results_Q, |
| 184 | + ) |
| 185 | + |
| 186 | + # Set up generation config |
| 187 | + generation_config = SamplingParams( |
| 188 | + temperature=0.0, # Deterministic generation |
| 189 | + top_p=1.0, |
| 190 | + max_tokens=5, |
| 191 | + n=1, |
| 192 | + ) |
| 193 | + |
| 194 | + # Create a PromptRequest |
| 195 | + request = PromptRequest( |
| 196 | + prompt_token_ids=prompt_token_ids, generation_config=generation_config, dataset_index=[0], training_step=0 |
| 197 | + ) |
| 198 | + |
| 199 | + # Send the request |
| 200 | + param_prompt_Q.put(request) |
| 201 | + |
| 202 | + # Get the result |
| 203 | + result = inference_results_Q.get(timeout=30) |
| 204 | + |
| 205 | + # Verify we got a GenerationResult |
| 206 | + self.assertIsInstance(result, GenerationResult) |
| 207 | + self.assertIsNotNone(result.responses) |
| 208 | + self.assertEqual(len(result.responses), 1) |
| 209 | + self.assertEqual(result.dataset_index, [0]) |
| 210 | + |
| 211 | + # Get the response IDs (skip the prompt) |
| 212 | + response_ids = result.responses[0] |
| 213 | + |
| 214 | + # Decode the response |
| 215 | + generated_text = tokenizer.decode(response_ids, skip_special_tokens=True) |
| 216 | + |
| 217 | + self.assertIsInstance(generated_text, str) |
| 218 | + self.assertGreater(len(generated_text), 0) |
| 219 | + |
| 220 | + # Send stop signal |
| 221 | + param_prompt_Q.put(None) |
0 commit comments