-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathVerify_Test_Accuracy.py
76 lines (60 loc) · 3.88 KB
/
Verify_Test_Accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from silence_tensorflow import silence_tensorflow
silence_tensorflow()
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import csv
import subprocess
from NN_Models import AdverbModel, PrepositionModel, ColorModel, CommandModel, NumberModel, CharacterCNN
modelDict = {'Adverb': AdverbModel.AdverbNet(),
'Alphabet': CharacterCNN.CharCNN(),
'Colors': ColorModel.ColorsNet(),
'Commands': CommandModel.CommandsNet(),
'Numbers': NumberModel.NumbersNet(),
'Prepositions': PrepositionModel.PrepositionsNet()}
def verifyTestCategory(categoryName='Adverb', TrainedModel=None, batch_size=16):
test_dir = '../CNN-Test-Images/{}/'.format(categoryName)
test_image_generator = ImageDataGenerator(rescale=1. / 255) # Generator for our test data
test_data_gen = test_image_generator.flow_from_directory(batch_size=batch_size,
directory=test_dir,
shuffle=False,
target_size=(224, 224),
class_mode='categorical',
color_mode='grayscale')
model = modelDict[categoryName]
model.Model.compile(optimizer="Adam", loss='categorical_crossentropy', metrics=['accuracy'])
model.Model = TrainedModel
temp = model.Model.evaluate(test_data_gen)
return temp[1]
def verifyTrainCategory(categoryName='Adverb', batch_size=16):
train_dir = '../CNN-Training-Images/{}/'.format(categoryName)
train_image_generator = ImageDataGenerator(rescale=1. / 255) # Generator for our test data
train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size,
directory=train_dir,
shuffle=False,
target_size=(224, 224),
class_mode='categorical',
color_mode='grayscale')
model = modelDict[categoryName]
model.Model.compile(optimizer="Adam", loss='categorical_crossentropy', metrics=['accuracy'])
modelPath = 'C:/Users/amrkh/Desktop/SavedModels/'
modelPath += categoryName
model.Model = tf.keras.models.load_model(modelPath + '/')
temp = model.Model.evaluate(train_data_gen)
return model.Model, temp[1]
if __name__ == "__main__":
categoriesList = ['Adverb', 'Alphabet', 'Commands', 'Colors', 'Numbers', 'Prepositions']
with open('Project_Insights/Project_Accuracy.csv', 'w', newline='') as csvfile:
filewriter = csv.writer(csvfile)
filewriter.writerow(['Category', 'Train Accuracy', 'Test Accuracy'])
for category in categoriesList:
categoryModel, categoryTrainAccuracy = verifyTrainCategory(categoryName=category)
categoryTrainAccuracy = str(round(categoryTrainAccuracy * 100, 2))
categoryTestAccuracy = str(round(verifyTestCategory(categoryName=category,
TrainedModel=categoryModel) * 100, 2))
print("Category {}: Train --> {}%, Test --> {}%".format(category, categoryTrainAccuracy,
categoryTestAccuracy))
with open('Project_Insights/Project_Accuracy.csv', 'a', newline='') as csvfile:
filewriter = csv.writer(csvfile, delimiter=',',
quotechar='|', quoting=csv.QUOTE_MINIMAL)
filewriter.writerow([category, categoryTrainAccuracy, categoryTestAccuracy])
subprocess.check_call(['Rscript', 'Visualize_Model_Accuracy.R'], shell=False)