-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_fista_pixelsnail.py
360 lines (284 loc) · 12.7 KB
/
train_fista_pixelsnail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import argparse
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from torchvision import datasets, transforms, utils
try:
from apex import amp
except ImportError:
amp = None
from dataset import LMDBDataset
# from models.pixelsnail import PixelSNAIL
from models.fista_pixelsnail import FistaPixelSNAIL
from scheduler import CycleScheduler
import argparse
import pickle
import os
#h
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import lmdb
from tqdm import tqdm
from torchvision import datasets
from dataset import CodeRow, NamedDataset
from models.vqvae import VQVAE
import torch.nn as nn
from utils import util_funcs
from models.model_utils import get_model, get_dataset
from dataset import LMDBDataset
import numpy as np
from tensorboardX import SummaryWriter
import datetime
def train(args, epoch, loader, model, optimizer, scheduler, device, writer, experiment_name, vqvae_model):
loader = tqdm(loader, desc='PixelSnail training {}'.format(experiment_name))
criterion = nn.CrossEntropyLoss()
multilabel_criterion = nn.BCEWithLogitsLoss()
kl_criterion = nn.KLDivLoss()
total_coefficients_loss = 0
total_num_nonzeros_loss = 0
total_atom_loss = 0
total_steps = 0
total_loss = 0
for i, (top, bottom, label) in enumerate(loader):
model.zero_grad()
top = top.to(device)
if args.hier == 'top':
top = top.to(device)
target = top
reconstruction, num_nonzeros, sigma_matrix, coefficients = model(top)
elif args.hier == 'bottom':
bottom = bottom.to(device)
target = bottom
if hasattr(model, 'prepare_inputs'): # False if using DataParallel
used_atoms_mask, gt_num_nonzeros = model.prepare_inputs(bottom)
else:
used_atoms_mask, gt_num_nonzeros = model.module.prepare_inputs(bottom)
sampled_atoms, sampled_num_nonzeros, coefficients = model(bottom, used_atoms_mask, gt_num_nonzeros)
if i % 25 == 0:
save_reconstruction(bottom, coefficients, epoch, vqvae_model, i, 'train')
# Todo: Expose different loss weights as script parameters
atom_loss = multilabel_criterion(sampled_atoms, used_atoms_mask.float())
num_nonzeros_loss = criterion(sampled_num_nonzeros, gt_num_nonzeros)
coefficients_loss = kl_criterion(coefficients, target)
loss = coefficients_loss
# loss = atom_loss + num_nonzeros_loss + coefficients_loss
loss.backward()
if scheduler is not None:
scheduler.step()
optimizer.step()
# TODO: Plan what we want to log
total_steps += 1
total_coefficients_loss += coefficients_loss.item()
total_num_nonzeros_loss += num_nonzeros_loss.item()
total_atom_loss += atom_loss.item()
total_loss += loss.item()
lr = optimizer.param_groups[0]['lr']
loader.set_postfix(
{
'Epoch': epoch + 1,
'Loss': f'{loss.item():.5f}',
'Coefficients loss': f'{coefficients_loss.item():.5f}',
'Num nonzeros loss': f'{num_nonzeros_loss.item():.5f}',
'Atom selection loss': f'{atom_loss.item():.5f}',
'LR': f'{lr:.5f}'
}
)
loader.update(1)
return total_coefficients_loss / total_steps, total_num_nonzeros_loss / total_steps, total_atom_loss / total_steps, total_loss / total_steps
def save_reconstruction(inthing, out, epoch, vqvae_model, i, phase):
X1 = vqvae_model.decode_code(out.to(next(vqvae_model.parameters()).device))
X2 = vqvae_model.decode_code(inthing.clone().detach().to(next(vqvae_model.parameters()).device))
utils.save_image(
torch.cat([X1, X2], 0),
'dumps/fista_pixelsnail_dumps/pixelsnail_reconstrution_epoch[{}]_batch[{}]_phase[{}].png'.format(epoch,i , phase),
nrow=2,
normalize=True,
range=(-1, 1),
)
def test(args, epoch, loader, model, optimizer, scheduler, device, writer, experiment_name, vqvae_model):
loader = tqdm(loader, desc='PixelSnail testing {}'.format(experiment_name))
model.eval()
criterion = nn.CrossEntropyLoss()
total_accuracy = 0
total_steps = 0
total_loss = 0
for i, (top, bottom, label) in enumerate(loader):
if args.hier == 'top':
top = top.to(device)
target = top
out, _ = model(top)
elif args.hier == 'bottom':
bottom = bottom.to(device)
target = bottom
out, _ = model(bottom)
# out, _ = model(bottom, condition=top)
if i % 25 == 0:
save_reconstruction(bottom, out, epoch, vqvae_model, i, 'train')
loss = criterion(out, target)
_, pred = out.max(1)
correct = (pred == target).float()
accuracy = correct.sum() / target.numel()
total_accuracy += accuracy
total_steps += 1
total_loss += loss.item()
loader.set_postfix(
{
'Epoch': epoch + 1,
'Loss': f'{loss.item():.5f}',
'Acc': f'{accuracy:.5f}'
}
)
loader.update(1)
return total_accuracy / total_steps, total_loss / total_steps
class PixelTransform:
def __init__(self):
pass
def __call__(self, input):
ar = np.array(input)
return torch.from_numpy(ar).long()
def create_run(architecture, dataset, num_embeddings, num_workers, selection_fn, neighborhood, device, embed_dim, size, **kwargs):
global args, scheduler
# Get VQVAE experiment name
experiment_name = util_funcs.create_experiment_name(architecture, dataset, num_embeddings, neighborhood, selection_fn=selection_fn, size=size, **kwargs)
# Prepare logger
writer = SummaryWriter(os.path.join('runs', 'pixelsnail_' + experiment_name + '2', str(datetime.datetime.now())))
# Load datasets
test_loader, train_loader = load_datasets(args, experiment_name, num_workers, dataset)
# Create model and optimizer
model, optimizer = prepare_model_parts(train_loader)
# Get checkpoint path for underlying VQ-VAE model
checkpoint_name = util_funcs.create_checkpoint_name(experiment_name, kwargs['ckpt_epoch'])
checkpoint_path = f'checkpoint/{checkpoint_name}'
# Load underlying VQ-VAE model for logging purposes
vqvae_model = get_model(architecture, num_embeddings, device, neighborhood, selection_fn, embed_dim, parallel=False, **kwargs)
vqvae_model.load_state_dict(torch.load(os.path.join(checkpoint_path)), strict=False)
vqvae_model = vqvae_model.to(args.device)
vqvae_model.eval()
# Train model
train_coefficients_loss, train_num_nonzeros_loss, train_atom_loss, train_losses, \
test_coefficients_loss, test_num_nonzeros_loss, test_atom_loss, test_losses, = \
run_train(args, experiment_name, model, optimizer, scheduler, test_loader, train_loader, writer, vqvae_model)
return train_coefficients_loss, train_num_nonzeros_loss, train_atom_loss, train_losses, \
test_coefficients_loss, test_num_nonzeros_loss, test_atom_loss, test_losses
def run_train(args, experiment_name, model, optimizer, scheduler, test_loader, train_loader, writer, vqvae_model):
train_coefficients_loss = []
train_num_nonzeros_loss = []
train_atom_loss = []
train_losses = []
test_coefficients_loss = []
test_num_nonzeros_loss = []
test_atom_loss = []
test_losses = []
for i in range(args.pixelsnail_epoch):
# Train epoch
avg_train_coefficients_loss, avg_train_num_nonzeros_loss, avg_train_atom_loss, avg_train_losses = \
train(args, i, train_loader, model, optimizer, scheduler, args.device, writer, experiment_name, vqvae_model)
# Test epoch
avg_test_coefficients_loss, avg_test_num_nonzeros_loss, avg_test_atom_loss, avg_test_losses = \
test(args, i, train_loader, model, optimizer, scheduler, args.device, writer, experiment_name, vqvae_model)
# Log train outputs
train_coefficients_loss.append(avg_train_coefficients_loss)
train_num_nonzeros_loss.append(avg_train_num_nonzeros_loss)
train_num_nonzeros_loss.append(avg_train_atom_loss)
train_atom_loss.append(avg_train_losses)
train_losses.append(avg_train_losses)
writer.add_scalar('train/coefficients_loss', avg_train_coefficients_loss)
writer.add_scalar('train/num_nonzeros_loss', avg_train_num_nonzeros_loss)
writer.add_scalar('train/atom_loss', avg_train_atom_loss)
writer.add_scalar('train/loss', avg_train_losses)
# Log test outputs
test_coefficients_loss.append(avg_test_coefficients_loss)
test_num_nonzeros_loss.append(avg_test_num_nonzeros_loss)
test_num_nonzeros_loss.append(avg_test_atom_loss)
test_atom_loss.append(avg_test_losses)
test_losses.append(avg_train_losses)
writer.add_scalar('test/coefficients_loss', avg_test_coefficients_loss)
writer.add_scalar('test/num_nonzeros_loss', avg_test_num_nonzeros_loss)
writer.add_scalar('test/atom_loss', avg_test_atom_loss)
writer.add_scalar('test/loss', avg_test_losses)
# Create checkpoint
torch.save(
{'model': model.module.state_dict(), 'args': args},
f'checkpoint/pixelsnail_{experiment_name}_{args.hier}_{str(i + 1).zfill(3)}.pt',
)
return train_coefficients_loss, train_num_nonzeros_loss, train_atom_loss, train_losses, \
test_coefficients_loss, test_num_nonzeros_loss, test_atom_loss, test_losses
def prepare_model_parts(train_loader):
global args, scheduler
# Load specific checkpoint to continue training
ckpt = {}
if args.pixelsnail_ckpt is not None:
ckpt = torch.load(args.pixelsnail_ckpt)
args = ckpt['args']
# Create PixelSnail object
if args.hier == 'top':
model = FistaPixelSNAIL(
[args.size // 8, args.size // 8],
512,
args.pixelsnail_channel,
5,
4,
args.pixelsnail_n_res_block,
args.pixelsnail_n_res_channel,
dropout=args.pixelsnail_dropout,
n_out_res_block=args.pixelsnail_n_out_res_block,
)
elif args.hier == 'bottom':
model = FistaPixelSNAIL(
[args.size // 4, args.size // 4],
512,
args.pixelsnail_channel,
5,
4,
args.pixelsnail_n_res_block,
args.pixelsnail_n_res_channel,
attention=False,
dropout=args.pixelsnail_dropout,
n_cond_res_block=args.pixelsnail_n_cond_res_block,
cond_res_channel=args.pixelsnail_n_res_channel,
)
# Load saved checkpoint into PixelSnail object
if 'model' in ckpt:
model.load_state_dict(ckpt['model'])
# Parallelize training
model = nn.DataParallel(model)
# Move model to proper device
model = model.to(args.device)
# Create other training objects
optimizer = optim.Adam(model.parameters(), lr=args.pixelsnail_lr)
if amp is not None:
model, optimizer = amp.initialize(model, optimizer, opt_level=args.amp)
scheduler = None
if args.pixelsnail_sched == 'cycle':
scheduler = CycleScheduler(
optimizer, args.pixelsnail_lr, n_iter=len(train_loader) * args.pixelsnail_epoch, momentum=None
)
return model, optimizer
def load_datasets(args, experiment_name, num_workers, dataset):
"""
Load LMDB datasets
"""
db_name = util_funcs.create_checkpoint_name(experiment_name, args.ckpt_epoch)[:-3] + '_dataset[{}]'.format(dataset)
train_dataset = LMDBDataset(os.path.join('codes', 'train_codes', db_name), args.architecture)
test_dataset = LMDBDataset(os.path.join('codes', 'test_codes', db_name ), args.architecture)
train_loader = DataLoader(train_dataset, batch_size=args.pixelsnail_batch, shuffle=True, num_workers=num_workers)
test_loader = DataLoader(test_dataset, batch_size=args.pixelsnail_batch, shuffle=True, num_workers=num_workers)
return test_loader, train_loader
def log_arguments(**arguments):
experiment_name = util_funcs.create_experiment_name(**arguments)
with open(os.path.join('checkpoint', experiment_name + '_args.txt'), 'w') as f:
for key in arguments.keys():
f.write('{} : {} \n'.format(key, arguments[key]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser = util_funcs.base_parser(parser)
parser = util_funcs.vqvae_parser(parser)
parser = util_funcs.code_extraction_parser(parser)
parser = util_funcs.pixelsnail_parser(parser)
args = parser.parse_args()
print(args)
log_arguments(**vars(args))
create_run(**vars(args))