@@ -122,3 +122,23 @@ a theoretical foundation for implementing polynomials manipulation module.
122
122
.. [Man93 ] Yiu-Kwong Man, "On Computing Closed Forms for Indefinite Summations",
123
123
Journal of Symbolic Computation, Volume 16, Issue 4, 1993, Pages 355-376
124
124
http://www.sciencedirect.com/science/article/pii/S0747717183710539
125
+
126
+ .. [Kapur1994 ] Deepak Kapur, Tushar Saxena, and Lu Yang. "Algebraic and
127
+ geometric reasoning using Dixon resultants", In Proceedings of the
128
+ international symposium on Symbolic and algebraic computation (ISSAC '94),
129
+ 1994, pages 99-107.
130
+ https://www.researchgate.net/publication/2514261_Algebraic_and_Geometric_Reasoning_using_Dixon_Resultants
131
+
132
+ .. [Palancz08 ] B Paláncz, P Zaletnyik, JL Awange, EW Grafarend. "Dixon resultant's
133
+ solution of systems of geodetic polynomial equations", Journal of Geodesy,
134
+ 2008, Springer,
135
+ https://www.researchgate.net/publication/225607735_Dixon_resultant's_solution_of_systems_of_geodetic_polynomial_equations.
136
+
137
+ .. [Bruce97 ] Bruce Randall Donald, Deepak Kapur, and Joseph L. Mundy (Eds.).
138
+ "Symbolic and Numerical Computation for Artificial Intelligence",
139
+ Chapter 2, Academic Press, Inc., Orlando, FL, USA, 1997,
140
+ https://www2.cs.duke.edu/donaldlab/Books/SymbolicNumericalComputation/045-087.pdf.
141
+
142
+ .. [Stiller96 ] P Stiller. "An introduction to the theory of resultants",
143
+ Mathematics and Computer Science, T&M University, 1996, Citeseer,
144
+ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.590.2021&rep=rep1&type=pdf.
0 commit comments