-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
87 lines (73 loc) · 2.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
from keras.models import Model
from keras.layers import GlobalAveragePooling2D, Dense
from keras.callbacks import ModelCheckpoint
from keras.applications import resnet50, inception_resnet_v2
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from func import tf_init, plot_training, get_model_memory_usage
import os
def train(type): # we deploy two networks resnet50 and inceptionresnet_v2
os.system('mkdir ./model/')
os.system('mkdir ./model/snapshot/')
os.system('mkdir ./model/output/')
if type == 'resnet50':
csize = 224
batch_size = 32
preprocess_input = resnet50.preprocess_input
base_model = ResNet50(
weights='imagenet', pooling='avg', include_top=False, input_shape=(csize, csize, 3))
else:
csize = 299
batch_size = 16
preprocess_input = inception_resnet_v2.preprocess_input
base_model = InceptionResNetV2(
weights='imagenet', pooling='avg', include_top=False, input_shape=(csize, csize, 3))
predictions = Dense(1, activation='sigmoid')(base_model.output)
model = Model(inputs=base_model.input, outputs=predictions)
# summary network
# model.summary()
# calculate memory used for training network
# print(get_model_memory_usage(batch_size, model))
sgd = SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(sgd, loss='binary_crossentropy', metrics=['accuracy'])
data_gen = ImageDataGenerator(
shear_range=0.2,
zoom_range=0.2,
rotation_range=20,
horizontal_flip=True,
width_shift_range=0.2,
height_shift_range=0.2,
preprocessing_function=preprocess_input
)
train_gen = data_gen.flow_from_directory(
directory='./data/train/',
class_mode='binary',
batch_size=batch_size,
target_size=(csize, csize)
)
val_gen = data_gen.flow_from_directory(
directory='./data/test/',
class_mode='binary',
batch_size=batch_size,
target_size=(csize, csize)
)
model_saver = ModelCheckpoint(
'./model/snapshot/' + type +
'-{epoch:02d}-{val_loss:.3f}-{val_acc:.3f}.h5',
save_best_only=True, monitor='val_acc')
callbacks = [model_saver]
history = model.fit_generator(
generator=train_gen,
validation_data=val_gen,
epochs=50,
callbacks=callbacks,
steps_per_epoch=int(train_gen.n / train_gen.batch_size),
validation_steps=int(val_gen.n / val_gen.batch_size)
)
plot_training(history)
model.save('./model/output/{}.h5'.format(type))
if __name__ == "__main__":
tf_init()
train('resnet50')