This example demonstrates the use of a simple Lucene index. Lucene provides a powerful text search and analysis.
In this example, two servers host a single partitioned region with entries that represent employee information. The example indexes the first and last names of employees.
This example assumes that Java and Geode are installed.
-
Set directory
geode-examples/lucene
to be the current working directory. Each step in this example specifies paths relative to that directory. -
Build the example (with
EmployeeData
class)$ ../gradlew build
-
Run a script that starts a locator and two servers, creates a Lucene index called
simpleIndex
, and then creates theexample-region
region. A Lucene index must be created before creating the region.$ gfsh run --file=scripts/start.gfsh
-
Run the example to populate both the Lucene index and
example-region
. The data will also be retrieved from the region and printed to the console.$ ../gradlew run
-
Run a
gfsh
command to see the contents of the region$ gfsh ... gfsh>connect --locator=localhost[10334] gfsh>query --query="select * from /example-region" ...
-
Try different Lucene searches for data in example-region
gfsh> list lucene indexes
Note that each server that holds partitioned data for this region has both the
simpleIndex
,analyzerIndex
and thenestedObjectIndex
. Each Lucene index is stored as a co-located region with the partitioned data region.// Search for an exact name match gfsh>search lucene --name=simpleIndex --region=example-region --queryStrings="Jive" --defaultField=lastName
// Search for last name using fuzzy logic: sounds like 'chive' gfsh>search lucene --name=simpleIndex --region=example-region --queryStrings="chive~" --defaultField=lastName
// Do a compound search on first and last name using fuzzy sounds like logic gfsh>search lucene --name=simpleIndex --region=example-region --queryStrings="firstName:cat~ OR lastName:chive~" --defaultField=lastName
// Do a compound search on last name and email using analyzerIndex gfsh>search lucene --name=analyzerIndex --region=example-region --queryStrings="lastName:hall~ AND email:[email protected]" --defaultField=lastName
// Do a compound search on nested object with both 5035330001 AND 5036430001 in contacts // Note: 5035330001 is the phone number of one of the contacts, 5036430001 is phone number of another contact. Since they are both contacts of this employee, it will lead to this employee. gfsh>search lucene --name=nestedObjectIndex --region=/example-region --queryString="5035330001 AND 5036430001" --defaultField=contacts.phoneNumbers
// If query on 5035330001 AND 5036430002, it will not find the person, because the 2 phone numbers belong to different people's contacts. gfsh>search lucene --name=nestedObjectIndex --region=/example-region --queryString="5035330001 AND 5036430002" --defaultField=contacts.phoneNumbers
// If query on 5035330001 OR 5036430002, it will find 2 people's entries gfsh>search lucene --name=nestedObjectIndex --region=/example-region --queryString="5035330001 OR 5036430002" --defaultField=contacts.phoneNumbers
-
Examine the Lucene index statistics
gfsh>describe lucene index --name=simpleIndex --region=example-region
Note the statistic show the fields that are indexed and the Lucene analyzer used for each field. In the next example we will specify a different Lucene analyzer for each field. Additional statistics listed are the number of documents (region entries) indexed, number of entries committed as well as the number of queries executed for each Lucene index.
-
Exit gfsh and shut down the cluster
gfsh>exit $ gfsh run --file=scripts/stop.gfsh
-
Clean up any generated directories and files so this example can be rerun.
$ ../gradlew cleanServer