-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathlayers.py
60 lines (50 loc) · 1.93 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import numpy as np
#DEBUG = False
class RangesLayer(object):
def __init__(self, width, height):
focalLength = 517.97
urange = np.arange(width).reshape(1, -1).repeat(height, 0) - width * 0.5
vrange = np.arange(height).reshape(-1, 1).repeat(width, 1) - height * 0.5
self.ranges = np.array([urange / focalLength / width * 640, np.ones(urange.shape), -vrange / focalLength / height * 480]).transpose([1, 2, 0])
return
def forward(self):
return self.ranges
def PlaneDepthLayer(planes, ranges):
batchSize = 1
if len(planes.shape) == 3:
batchSize = planes.shape[0]
planes = planes.reshape(planes.shape[0] * planes.shape[1], planes.shape[2])
pass
planesD = np.linalg.norm(planes, 2, 1)
planesD = np.maximum(planesD, 1e-4)
planesNormal = -planes / planesD.reshape(-1, 1).repeat(3, 1)
print(planesD, planesNormal)
print(ranges.min(), ranges.max())
normalXYZ = np.dot(ranges, planesNormal.transpose())
normalXYZ[normalXYZ == 0] = 1e-4
normalXYZ = 1 / normalXYZ
print(normalXYZ.min(), normalXYZ.max())
depths = -normalXYZ
depths[:, :] *= planesD
if batchSize > 1:
depths = depths.reshape(depths.shape[0], depths.shape[1], batchSize, -1).transpose([2, 0, 1, 3])
pass
depths[(depths < 0) + (depths > 10)] = 10
#depths[depths < 0] = 0
#depths[depths > 10] = 10
return depths
def PlaneNormalLayer(planes, ranges):
batchSize = 1
if len(planes.shape) == 3:
batchSize = planes.shape[0]
planes = planes.reshape(planes.shape[0] * planes.shape[1], planes.shape[2])
pass
planesD = np.linalg.norm(planes, 2, 1)
planesD = np.maximum(planesD, 1e-4)
planesNormal = -planes / planesD.reshape(-1, 1).repeat(3, 1)
normals = planesNormal.reshape(1, 1, -1, 3).repeat(ranges.shape[0], 0).repeat(ranges.shape[1], 1)
if batchSize > 1:
normals = normals.reshape(normals.shape[0], normals.shape[1], batchSize, -1, 3).transpose([2, 0, 1, 3, 4])
pass
return normals