-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin-missing-number-fast.py
292 lines (224 loc) · 7.16 KB
/
min-missing-number-fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# codility test for Eversight
#
# write your code in Python 3.6
test = [0, 1, 2, 3, 4, 7, 9, 12]
def solution(A):
"""
Task description is given on Codility website, https://app.codility.com/programmers/
minimal missing number
"""
B = [i+1 for i in range(max(A))]
print(B, set(A) ^ set(B))
return min(set(A) ^ set(B))
def solution1(A):
"""
Created on Fri Feb 7 09:40:14 2020
@author: artemponomarev
"""
debug = True
result = -1
imoInput = indexate_input(A)
if debug:
print("imoInput = ", imoInput)
# first step: check is the map is invertable
is_inverting_possible = False
if is_inverting_possible:
print("inv imoInput = ", invert_matrix(imoInput))
# second
# mask related to input or ad hoc
mask = [[i+j\
for i in range(max(len(A), max(A)+1))]\
for j in range(max(len(A), max(A)+1))]
if debug:
print("\nmask = ", mask)
product = matrix_multiply(mask, imoInput)
if debug:
print("\nmask times input = ", product)
if debug:
print(A, product[1], set(A) ^ set(product[1]))
result = min(set(A) ^ set(product[1]))
return result
def indexate_input(A):
return [[1 if j < len(A) and A[j] == i else 0
for i in range(max(len(A), max(A)+1))]
for j in range(max(len(A), max(A)+1))]
def rotate_matrix(mat):
N=len(mat)
# Consider all squares one by one
for x in range(0, int(N/2)):
# Consider elements in group
# of 4 in current square
for y in range(x, N-x-1):
# store current cell in temp variable
temp = mat[x][y]
# move values from right to top
mat[x][y] = mat[y][N-1-x]
# move values from bottom to right
mat[y][N-1-x] = mat[N-1-x][N-1-y]
# move values from left to bottom
mat[N-1-x][N-1-y] = mat[N-1-y][x]
# assign temp to left
mat[N-1-y][x] = temp
return mat
def check_squareness(A):
"""
Makes sure that a matrix is square
:param A: The matrix to be checked.
"""
if len(A) != len(A[0]):
raise ArithmeticError("Matrix must be square to inverse.")
def determinant(A, total=0):
indices = list(range(len(A)))
if len(A) == 2 and len(A[0]) == 2:
val = A[0][0] * A[1][1] - A[1][0] * A[0][1]
return val
for fc in indices:
As = copy_matrix(A)
As = As[1:]
height = len(As)
# builder = 0
for i in range(height):
As[i] = As[i][0:fc] + As[i][fc+1:]
sign = (-1) ** (fc % 2)
sub_det = determinant(As)
total += A[0][fc] * sign * sub_det
return total
def check_non_singular(A):
det = determinant(A)
if det == 0:
raise ArithmeticError("Singular Matrix!")
return det
def zeros_matrix(rows, cols):
"""
Creates a matrix filled with zeros.
:param rows: the number of rows the matrix should have
:param cols: the number of columns the matrix should have
:returns: list of lists that form the matrix.
"""
M = []
while len(M) < rows:
M.append([])
while len(M[-1]) < cols:
M[-1].append(0.0)
return M
def identity_matrix(n):
"""
Creates and returns an identity matrix.
:param n: the square size of the matrix
:returns: a square identity matrix
"""
I = zeros_matrix(n, n)
for i in range(n):
I[i][i] = 1.0
return I
def copy_matrix(M):
"""
Creates and returns a copy of a matrix.
:param M: The matrix to be copied
:return: The copy of the given matrix
"""
rows = len(M)
cols = len(M[0])
MC = zeros_matrix(rows, cols)
for i in range(rows):
for j in range(rows):
MC[i][j] = M[i][j]
return MC
def print_matrix(M):
"""
docstring here
:param M: The matrix to be printed
"""
for row in M:
print([round(x,3)+0 for x in row])
def transpose(M):
"""
Creates and returns a transpose of a matrix.
:param M: The matrix to be transposed
:return: the transpose of the given matrix
"""
rows = len(M)
cols = len(M[0])
MT = zeros_matrix(cols, rows)
for i in range(rows):
for j in range(cols):
MT[j][i] = M[i][j]
return MT
def matrix_multiply(A,B):
"""
Returns the product of the matrix A * B
:param A: The first matrix - ORDER MATTERS!
:param B: The second matrix
:return: The product of the two matrices
"""
rowsA = len(A)
colsA = len(A[0])
rowsB = len(B)
colsB = len(B[0])
if colsA != rowsB:
raise ArithmeticError('Number of A columns must equal number of B rows.')
C = zeros_matrix(rowsA, colsB)
for i in range(rowsA):
for j in range(colsB):
total = 0
for ii in range(colsA):
total += A[i][ii] * B[ii][j]
C[i][j] = total
return C
def check_matrix_equality(A,B, tol=None):
"""
Checks the equality of two matrices.
:param A: The first matrix
:param B: The second matrix
:param tol: The decimal place tolerance of the check
:return: The boolean result of the equality check
"""
if len(A) != len(B) or len(A[0]) != len(B[0]):
return False
for i in range(len(A)):
for j in range(len(A[0])):
if tol == None:
if A[i][j] != B[i][j]:
return False
else:
if round(A[i][j],tol) != round(B[i][j],tol):
return False
return True
def invert_matrix(A, tol=None):
"""
Returns the inverse of the passed in matrix.
:param A: The matrix to be inversed
:return: The inverse of the matrix A
"""
# Section 1: Make sure A can be inverted.
check_squareness(A)
check_non_singular(A)
# Section 2: Make copies of A & I, AM & IM, to use for row operations
n = len(A)
AM = copy_matrix(A)
I = identity_matrix(n)
IM = copy_matrix(I)
# Section 3: Perform row operations
indices = list(range(n)) # to allow flexible row referencing ***
for fd in range(n): # fd stands for focus diagonal
fdScaler = 1.0 / AM[fd][fd]
# FIRST: scale fd row with fd inverse.
for j in range(n): # Use j to indicate column looping.
AM[fd][j] *= fdScaler
IM[fd][j] *= fdScaler
# SECOND: operate on all rows except fd row as follows:
for i in indices[0:fd] + indices[fd+1:]: # *** skip row with fd in it.
crScaler = AM[i][fd] # cr stands for "current row".
for j in range(n): # cr - crScaler * fdRow, but one element at a time.
AM[i][j] = AM[i][j] - crScaler * AM[fd][j]
IM[i][j] = IM[i][j] - crScaler * IM[fd][j]
# Section 4: Make sure that IM is an inverse of A within the specified tolerance
if check_matrix_equality(I,matrix_multiply(A,IM),tol):
return IM
else:
raise ArithmeticError("Matrix inverse out of tolerance.")
# main(): print the solution
print("\n\nsolution = ", solution(test))