-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreward_model.py
71 lines (59 loc) · 2.36 KB
/
reward_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch.nn as nn
from torch.utils.data import Dataset
from torchvision import transforms
from config import *
class LatentRewardDataset(Dataset):
def __init__(self, latents, rewards):
assert len(latents) == len(rewards), "Latents and rewards must have the same length"
self.latents = latents
self.rewards = rewards
def __len__(self):
return len(self.latents)
def __getitem__(self, idx):
latent = self.latents[idx]
reward = self.rewards[idx]
return {'latent': latent, 'reward': reward}
class LatentRewardCNN(nn.Module):
def __init__(self):
super(LatentRewardCNN, self).__init__()
self.cnn = nn.Sequential(
nn.Conv2d(4, 8, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(8, 16, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.AdaptiveAvgPool2d((8, 8)))
self.fc = nn.Sequential(
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 1),
)
def forward(self, x):
x = self.cnn(x)
x = x.view(x.size(0), -1)
reward = self.fc(x)
return reward
class Scorer:
def __init__(self, vae):
self.reward_model = LatentRewardCNN().to(device)
if os.path.exists(reward_model_path):
reward_model_pretrained = torch.load(reward_model_path, weights_only=True)
self.reward_model.load_state_dict(reward_model_pretrained['model_state_dict'])
print("Loaded existing reward model.")
else:
print("Initialized a new reward model.")
self.vae = vae
self.preprocess = transforms.Compose([
transforms.Normalize([0.5], [0.5]) # Normalize to range [-1, 1]
])
def score(self, images):
image_tensor = self.preprocess(images).to(device).half() # Ensure consistent float16 input
if len(image_tensor.shape) == 3: image_tensor = image_tensor.unsqueeze(0)
with torch.no_grad():
latents = self.vae.encode(image_tensor).latent_dist.mode().float() # Cast back to float32
rewards_predicted = self.reward_model(latents)
return rewards_predicted, latents