-
Notifications
You must be signed in to change notification settings - Fork 8
/
md5.cc
242 lines (210 loc) · 7.33 KB
/
md5.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*********************************************************************
* Filename: md5.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the MD5 hashing algorithm.
Algorithm specification can be found here:
* http://tools.ietf.org/html/rfc1321
This implementation uses little endian byte order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include "md5.h"
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "sn3d.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define _H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
#define FF(a, b, c, d, m, s, t) \
{ \
(a) += F(b, c, d) + (m) + (t); \
(a) = (b) + ROTLEFT(a, s); \
}
#define GG(a, b, c, d, m, s, t) \
{ \
(a) += G(b, c, d) + (m) + (t); \
(a) = (b) + ROTLEFT(a, s); \
}
#define HH(a, b, c, d, m, s, t) \
{ \
(a) += _H(b, c, d) + (m) + (t); \
(a) = (b) + ROTLEFT(a, s); \
}
#define II(a, b, c, d, m, s, t) \
{ \
(a) += I(b, c, d) + (m) + (t); \
(a) = (b) + ROTLEFT(a, s); \
}
/*********************** FUNCTION DEFINITIONS ***********************/
namespace {
void md5_transform(MD5_CTX *ctx, const BYTE data[]) {
WORD a = 0;
WORD b = 0;
WORD c = 0;
WORD d = 0;
WORD m[16];
WORD i = 0;
WORD j = 0;
// MD5 specifies big endian byte order, but this implementation assumes a little
// endian byte order CPU. Reverse all the bytes upon input, and re-reverse them
// on output (in md5_final()).
for (i = 0, j = 0; i < 16; ++i, j += 4) {
m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24);
}
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
FF(a, b, c, d, m[0], 7, 0xd76aa478);
FF(d, a, b, c, m[1], 12, 0xe8c7b756);
FF(c, d, a, b, m[2], 17, 0x242070db);
FF(b, c, d, a, m[3], 22, 0xc1bdceee);
FF(a, b, c, d, m[4], 7, 0xf57c0faf);
FF(d, a, b, c, m[5], 12, 0x4787c62a);
FF(c, d, a, b, m[6], 17, 0xa8304613);
FF(b, c, d, a, m[7], 22, 0xfd469501);
FF(a, b, c, d, m[8], 7, 0x698098d8);
FF(d, a, b, c, m[9], 12, 0x8b44f7af);
FF(c, d, a, b, m[10], 17, 0xffff5bb1);
FF(b, c, d, a, m[11], 22, 0x895cd7be);
FF(a, b, c, d, m[12], 7, 0x6b901122);
FF(d, a, b, c, m[13], 12, 0xfd987193);
FF(c, d, a, b, m[14], 17, 0xa679438e);
FF(b, c, d, a, m[15], 22, 0x49b40821);
GG(a, b, c, d, m[1], 5, 0xf61e2562);
GG(d, a, b, c, m[6], 9, 0xc040b340);
GG(c, d, a, b, m[11], 14, 0x265e5a51);
GG(b, c, d, a, m[0], 20, 0xe9b6c7aa);
GG(a, b, c, d, m[5], 5, 0xd62f105d);
GG(d, a, b, c, m[10], 9, 0x02441453);
GG(c, d, a, b, m[15], 14, 0xd8a1e681);
GG(b, c, d, a, m[4], 20, 0xe7d3fbc8);
GG(a, b, c, d, m[9], 5, 0x21e1cde6);
GG(d, a, b, c, m[14], 9, 0xc33707d6);
GG(c, d, a, b, m[3], 14, 0xf4d50d87);
GG(b, c, d, a, m[8], 20, 0x455a14ed);
GG(a, b, c, d, m[13], 5, 0xa9e3e905);
GG(d, a, b, c, m[2], 9, 0xfcefa3f8);
GG(c, d, a, b, m[7], 14, 0x676f02d9);
GG(b, c, d, a, m[12], 20, 0x8d2a4c8a);
HH(a, b, c, d, m[5], 4, 0xfffa3942);
HH(d, a, b, c, m[8], 11, 0x8771f681);
HH(c, d, a, b, m[11], 16, 0x6d9d6122);
HH(b, c, d, a, m[14], 23, 0xfde5380c);
HH(a, b, c, d, m[1], 4, 0xa4beea44);
HH(d, a, b, c, m[4], 11, 0x4bdecfa9);
HH(c, d, a, b, m[7], 16, 0xf6bb4b60);
HH(b, c, d, a, m[10], 23, 0xbebfbc70);
HH(a, b, c, d, m[13], 4, 0x289b7ec6);
HH(d, a, b, c, m[0], 11, 0xeaa127fa);
HH(c, d, a, b, m[3], 16, 0xd4ef3085);
HH(b, c, d, a, m[6], 23, 0x04881d05);
HH(a, b, c, d, m[9], 4, 0xd9d4d039);
HH(d, a, b, c, m[12], 11, 0xe6db99e5);
HH(c, d, a, b, m[15], 16, 0x1fa27cf8);
HH(b, c, d, a, m[2], 23, 0xc4ac5665);
II(a, b, c, d, m[0], 6, 0xf4292244);
II(d, a, b, c, m[7], 10, 0x432aff97);
II(c, d, a, b, m[14], 15, 0xab9423a7);
II(b, c, d, a, m[5], 21, 0xfc93a039);
II(a, b, c, d, m[12], 6, 0x655b59c3);
II(d, a, b, c, m[3], 10, 0x8f0ccc92);
II(c, d, a, b, m[10], 15, 0xffeff47d);
II(b, c, d, a, m[1], 21, 0x85845dd1);
II(a, b, c, d, m[8], 6, 0x6fa87e4f);
II(d, a, b, c, m[15], 10, 0xfe2ce6e0);
II(c, d, a, b, m[6], 15, 0xa3014314);
II(b, c, d, a, m[13], 21, 0x4e0811a1);
II(a, b, c, d, m[4], 6, 0xf7537e82);
II(d, a, b, c, m[11], 10, 0xbd3af235);
II(c, d, a, b, m[2], 15, 0x2ad7d2bb);
II(b, c, d, a, m[9], 21, 0xeb86d391);
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
}
} // anonymous namespace
void md5_init(MD5_CTX *ctx) {
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
}
void md5_update(MD5_CTX *ctx, const BYTE data[], size_t len) {
size_t i = 0;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
md5_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void md5_final(MD5_CTX *ctx, BYTE hash[]) {
size_t i = 0;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56) {
ctx->data[i++] = 0x00;
}
} else if (ctx->datalen >= 56) {
ctx->data[i++] = 0x80;
while (i < 64) {
ctx->data[i++] = 0x00;
}
md5_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[56] = ctx->bitlen;
ctx->data[57] = ctx->bitlen >> 8;
ctx->data[58] = ctx->bitlen >> 16;
ctx->data[59] = ctx->bitlen >> 24;
ctx->data[60] = ctx->bitlen >> 32;
ctx->data[61] = ctx->bitlen >> 40;
ctx->data[62] = ctx->bitlen >> 48;
ctx->data[63] = ctx->bitlen >> 56;
md5_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and MD uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff;
}
}
// added by Luke Shingles
void md5_file(const char filename[], char hashout[(2 * MD5_BLOCK_SIZE) + 1]) {
MD5_CTX ctx;
md5_init(&ctx);
FILE *infile = fopen(filename, "r");
assert_always(infile != nullptr);
BYTE buffer[1024];
size_t numbytes = 1;
while (numbytes != 0 && feof(infile) == 0) {
numbytes = fread(buffer, sizeof(char), 1024, infile);
assert_always(ferror(infile) == 0);
md5_update(&ctx, buffer, numbytes);
}
fclose(infile);
BYTE hashbytes[MD5_BLOCK_SIZE];
md5_final(&ctx, hashbytes);
for (int j = 0; j < MD5_BLOCK_SIZE; j++) {
snprintf(&hashout[2 * j], (2 * MD5_BLOCK_SIZE) + 1 - (2 * j), "%02x", hashbytes[j]);
}
hashout[2 * MD5_BLOCK_SIZE] = '\0';
}