-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRed-Black_Trees.cpp
317 lines (274 loc) · 9.9 KB
/
Red-Black_Trees.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*
A red–black tree is a kind of self-balancing binary search tree in computer science.
Each node of the binary tree has an extra bit, and that bit is often interpreted as
the color (red or black) of the node. These color bits are used to ensure the tree
remains approximately balanced during insertions and deletions.
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
http://www.cs.armstrong.edu/liang/animation/web/RBTree.html
*/
#include <stdlib.h>
#include <iostream>
#include <vector>
enum colors{RED, BLACK};
class Node{
public:
Node *parent, *left, *right;
int value;
colors node_color;
Node(Node *parent, int value, Node *left, Node *right,
colors node_color = RED) {
this->parent = parent;
this->value = value;
this->left = left;
this->right = right;
this->node_color = node_color;
}
};
class RBT{
public:
Node *nill = new Node(NULL, 0, NULL, NULL, BLACK); // NULL Node
Node *root = NULL;
RBT() {
root = NULL;
}
void inorder(Node *current = NULL) {
if ( current == NULL ) current = root;
// In-Order = (Left, Root, Right)
if ( current != nill ) {
if ( current->left != nill ) inorder(current->left);
std::cout <<"(" <<current->value <<" "
<<((current->node_color == RED) ? "R" : "B") <<"), ";
if ( current->right != nill ) inorder(current->right);
}
}
void left_rotate(Node *node) {
Node *childNode = node->right;
Node *parentNode = node->parent;
node->right = childNode->left;
if ( node->right != nill ) {
node->right->parent = node;
}
childNode->left = node;
node->parent = childNode;
if ( node == root ) {
root = childNode;
childNode->parent = nill;
} else {
if ( node == parentNode->left)
parentNode->left = childNode;
else
parentNode->right = childNode;
childNode->parent = parentNode;
}
}
void right_rotate(Node *node) {
Node *childNode = node->left;
Node *parentNode = node->parent;
node->left = childNode->right;
if ( node->left != nill ) {
node->left->parent = node;
}
childNode->right = node;
node->parent = childNode;
if ( root == node ) {
root = childNode;
childNode->parent = nill;
} else {
if ( parentNode->left == node )
parentNode->left = childNode;
else
parentNode->right = childNode;
childNode->parent = parentNode;
}
}
void insert_fixup(Node *node) {
while ( node->parent->node_color == RED ) {
if ( node->parent == node->parent->parent->left ) {
Node *uncleNode = node->parent->parent->right;
if ( uncleNode->node_color == RED ) {
node->parent->node_color = uncleNode->node_color = BLACK;
node->parent->parent->node_color = RED;
node = node->parent->parent;
} else {
if ( node == node->parent->right ) {
node = node->parent;
left_rotate(node);
}
node->parent->node_color = BLACK;
node->parent->parent->node_color = RED;
right_rotate(node->parent->parent);
}
} else if ( node->parent == node->parent->parent->right ) {
Node *uncleNode = node->parent->parent->left;
if ( uncleNode->node_color == RED ) {
node->parent->node_color = uncleNode->node_color = BLACK;
node->parent->parent->node_color = RED;
node = node->parent->parent;
} else {
if ( node == node->parent->left ) {
node = node->parent;
right_rotate(node);
}
node->parent->node_color = BLACK;
node->parent->parent->node_color = RED;
left_rotate(node->parent->parent);
}
}
}
root->node_color = BLACK;
}
void insert(int value) {
if ( root == NULL ) {
root = new Node(nill, value, nill, nill, BLACK);
} else {
Node *temp_parent = root, *temp = root;
while ( temp != nill ) {
temp_parent = temp;
temp = (value <= temp->value) ? temp->left : temp->right;
}
Node *new_node = new Node(temp_parent, value, nill, nill, RED);
if ( value <= temp_parent->value )
temp_parent->left = new_node;
else
temp_parent->right = new_node;
insert_fixup(new_node);
}
}
Node *search(int value) {
Node *tempNode = root;
while ( tempNode != nill ) {
if ( tempNode->value == value ) return tempNode;
tempNode = (value <= tempNode->value) ?
tempNode->left :
tempNode->right;
}
return NULL;
}
void transplant(Node *node, Node *replacement) {
if ( node == root )
root = replacement;
else if ( node->parent->left == node )
node->parent->left = replacement;
else
node->parent->right = replacement;
replacement->parent = node->parent;
}
Node *successor(Node *node) {
if ( node == NULL ) node = root;
if ( node == NULL || node == nill ) return NULL;
if ( node->right == nill ) {
while ( node->parent != nill && node->parent->right == node )
node = node->parent;
return node->parent;
}
Node *tempNode = node->right;
while ( tempNode->left != nill )
tempNode = tempNode->left;
return tempNode;
}
void delete_fix_up(Node *node) {
Node *sibling;
while ( node != root && node->node_color == BLACK ) {
if ( node == node->parent->left ) {
sibling = node->parent->right;
if ( sibling->node_color == RED ) {
sibling->node_color = BLACK;
node->parent->node_color = RED;
left_rotate(node->parent);
sibling = node->parent->right;
}
if ( sibling->left->node_color == BLACK &&
sibling->right->node_color == BLACK ) {
sibling->node_color = RED;
node = node->parent;
} else {
if ( sibling->right->node_color == BLACK ) {
sibling->left->node_color = BLACK;
sibling->node_color = RED;
right_rotate(sibling);
sibling = node->parent->right;
}
sibling->node_color = node->parent->node_color;
sibling->right->node_color = BLACK;
node->parent->node_color = BLACK;
left_rotate(node->parent);
node = root;
}
} else {
sibling = node->parent->left;
if ( sibling->node_color == RED ) {
sibling->node_color = BLACK;
node->parent->node_color = RED;
right_rotate(node->parent);
sibling = node->parent->left;
}
if ( sibling->left->node_color == BLACK &&
sibling->right->node_color == BLACK ) {
sibling->node_color = RED;
node = node->parent;
} else {
if ( sibling->left->node_color == BLACK ) {
sibling->right->node_color = BLACK;
sibling->node_color = RED;
left_rotate(sibling);
sibling = node->parent->left;
}
sibling->node_color = node->parent->node_color;
sibling->left->node_color = BLACK;
node->parent->node_color = BLACK;
right_rotate(node->parent);
node = root;
}
}
}
node->node_color = BLACK;
}
void remove(Node *node){
if ( node == NULL || node == nill )
return;
colors delete_node_color = node->node_color;
Node *replacement;
if ( node->left == nill ) {
replacement = node->right;
transplant(node, replacement);
} else if ( node->right == nill ) {
replacement = node->left;
transplant(node, replacement);
} else {
Node *replacement = successor(node);
node->value = replacement->value;
remove(replacement);
return;
}
if ( delete_node_color == BLACK ) {
delete_fix_up(replacement);
}
}
};
int main() {
srand(0);
int temp;
RBT a;
std::vector<int> nodes;
std::cout <<"\nInserting 10 nodes :";
for (int i = 0; i < 10; i++) {
temp = random() % 200 + 1;
std::cout <<"\n\tInserting " <<temp;
a.insert(temp);
nodes.push_back(temp);
}
std::cout <<"\n\nInorder : ";
a.inorder();
std::cout <<"\n\nDeleting 5 nodes :";
while ( nodes.size() > 5 ) {
temp = random() % nodes.size();
std::cout << "\n\tDeleting : " <<nodes[temp];
a.remove(a.search(nodes[temp]));
nodes.erase(nodes.begin() + temp);
}
std::cout <<"\n\nInorder : ";
a.inorder();
std::cout <<std::endl;
return 0;
}