|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import pandas as pd |
| 4 | + |
| 5 | +from experiment_utils import ExperimentBatchRunner |
| 6 | +from tabrepo import EvaluationRepository, EvaluationRepositoryCollection, Evaluator |
| 7 | +from tabrepo.scripts_v5.AutoGluon_class import AGWrapper |
| 8 | +from tabrepo.scripts_v5.ag_models.realmlp_model import RealMLPModel |
| 9 | + |
| 10 | +# If the artifact is present, it will be used and the models will not be re-run. |
| 11 | +if __name__ == '__main__': |
| 12 | + # Parse args |
| 13 | + parser = argparse.ArgumentParser() |
| 14 | + parser.add_argument('--datasets', nargs='+', type=str, required=True, help="List of datasets to evaluate") |
| 15 | + parser.add_argument('--folds', nargs='+', type=int, required=True, help="List of folds to evaluate") |
| 16 | + parser.add_argument('--methods', type=str, required=True, help="Path to the YAML file containing methods") |
| 17 | + args = parser.parse_args() |
| 18 | + |
| 19 | + # Load Context |
| 20 | + context_name = "D244_F3_C1530_30" # 30 Datasets. To run larger, set to "D244_F3_C1530_200" |
| 21 | + expname = "./initial_experiment_simple_simulator" # folder location of all experiment artifacts |
| 22 | + ignore_cache = False # set to True to overwrite existing caches and re-run experiments from scratch |
| 23 | + |
| 24 | + repo_og: EvaluationRepository = EvaluationRepository.from_context(context_name, cache=True) |
| 25 | + |
| 26 | + # Sample for a quick demo |
| 27 | + # datasets = ["Australian", "blood-transfusion-service-center"] |
| 28 | + # folds = [0, 1] |
| 29 | + |
| 30 | + # To run everything: |
| 31 | + # datasets = repo_og.datasets() |
| 32 | + # folds = repo_og.folds |
| 33 | + |
| 34 | + datasets = args.datasets |
| 35 | + if -1 in args.folds: |
| 36 | + folds = repo_og.folds # run on all folds |
| 37 | + else: |
| 38 | + folds = args.folds |
| 39 | + |
| 40 | + # Load methods from YAML file |
| 41 | + with open(args.methods, 'r') as file: |
| 42 | + methods_data = yaml.safe_load(file) |
| 43 | + |
| 44 | + methods = [(method["name"], eval(method["wrapper_class"]), method["fit_kwargs"]) for method in methods_data["methods"]] |
| 45 | + |
| 46 | + # methods = [ |
| 47 | + # ( |
| 48 | + # "RealMLP_c1_BAG_L1_v4_noes_r0", # Name of the method |
| 49 | + # AGWrapper, # Wrapper class |
| 50 | + # { |
| 51 | + # "fit_kwargs": { # Fit kwargs: AutoGluon hyperparameters + custom model hyperparameters |
| 52 | + # "num_bag_folds": 8, |
| 53 | + # "num_bag_sets": 1, |
| 54 | + # "fit_weighted_ensemble": False, |
| 55 | + # "calibrate": False, |
| 56 | + # "verbosity": 2, |
| 57 | + # "hyperparameters": { |
| 58 | + # RealMLPModel: { # Custom model class and its hyperparameters |
| 59 | + # "random_state": 0, |
| 60 | + # "use_early_stopping": False, |
| 61 | + # }, |
| 62 | + # }, |
| 63 | + # } |
| 64 | + # }, |
| 65 | + # ), |
| 66 | + # ] |
| 67 | + |
| 68 | + tids = [repo_og.dataset_to_tid(dataset) for dataset in datasets] |
| 69 | + repo: EvaluationRepository = ExperimentBatchRunner().generate_repo_from_experiments( |
| 70 | + expname=expname, |
| 71 | + tids=tids, |
| 72 | + folds=folds, |
| 73 | + methods=methods, |
| 74 | + task_metadata=repo_og.task_metadata, |
| 75 | + ignore_cache=ignore_cache, |
| 76 | + convert_time_infer_s_from_batch_to_sample=True, |
| 77 | + ) |
| 78 | + |
| 79 | + repo.print_info() |
| 80 | + |
| 81 | + save_path = "repo_new" |
| 82 | + repo.to_dir(path=save_path) # Load the repo later via `EvaluationRepository.from_dir(save_path)` |
| 83 | + |
| 84 | + print(f"New Configs : {repo.configs()}") |
| 85 | + |
| 86 | + repo_combined = EvaluationRepositoryCollection(repos=[repo_og, repo], config_fallback="ExtraTrees_c1_BAG_L1") |
| 87 | + repo_combined = repo_combined.subset(datasets=repo.datasets(), folds=repo.folds) |
| 88 | + |
| 89 | + repo_combined.print_info() |
| 90 | + |
| 91 | + comparison_configs_og = [ |
| 92 | + "RandomForest_c1_BAG_L1", |
| 93 | + "ExtraTrees_c1_BAG_L1", |
| 94 | + "LightGBM_c1_BAG_L1", |
| 95 | + "XGBoost_c1_BAG_L1", |
| 96 | + "CatBoost_c1_BAG_L1", |
| 97 | + "NeuralNetTorch_c1_BAG_L1", |
| 98 | + "NeuralNetFastAI_c1_BAG_L1", |
| 99 | + ] |
| 100 | + |
| 101 | + comparison_configs = comparison_configs_og + [ |
| 102 | + "RealMLP_c1_BAG_L1_v4_noes_r0", |
| 103 | + ] |
| 104 | + |
| 105 | + df_ensemble_results, df_ensemble_weights = repo_combined.evaluate_ensembles(configs=comparison_configs, ensemble_size=40) |
| 106 | + df_ensemble_results = df_ensemble_results.reset_index() |
| 107 | + df_ensemble_results["framework"] = "ensemble_with_RealMLP_c1" |
| 108 | + |
| 109 | + df_ensemble_results_og, df_ensemble_weights_og = repo_combined.evaluate_ensembles(configs=comparison_configs_og, ensemble_size=40) |
| 110 | + df_ensemble_results_og = df_ensemble_results_og.reset_index() |
| 111 | + df_ensemble_results_og["framework"] = "ensemble_og" |
| 112 | + |
| 113 | + results_df = pd.concat([ |
| 114 | + df_ensemble_results, |
| 115 | + df_ensemble_results_og, |
| 116 | + ], ignore_index=True) |
| 117 | + |
| 118 | + baselines = [ |
| 119 | + "AutoGluon_bq_4h8c_2023_11_14", |
| 120 | + ] |
| 121 | + |
| 122 | + evaluator = Evaluator(repo=repo_combined) |
| 123 | + |
| 124 | + p = evaluator.plot_ensemble_weights(df_ensemble_weights=df_ensemble_weights, figsize=(16, 60)) |
| 125 | + p.savefig("ensemble_weights_w_RealMLP_c1") |
| 126 | + |
| 127 | + metrics = evaluator.compare_metrics( |
| 128 | + results_df=results_df, |
| 129 | + datasets=datasets, |
| 130 | + folds=folds, |
| 131 | + baselines=baselines, |
| 132 | + configs=comparison_configs, |
| 133 | + ) |
| 134 | + |
| 135 | + metrics_tmp = metrics.reset_index(drop=False) |
| 136 | + |
| 137 | + with pd.option_context("display.max_rows", None, "display.max_columns", None, "display.width", 1000): |
| 138 | + print(f"Config Metrics Example:\n{metrics.head(100)}") |
| 139 | + |
| 140 | + evaluator_output = evaluator.plot_overall_rank_comparison( |
| 141 | + results_df=metrics, |
| 142 | + save_dir=expname, |
| 143 | + evaluator_kwargs={ |
| 144 | + "treat_folds_as_datasets": True, |
| 145 | + "frameworks_compare_vs_all": ["RealMLP_c1_BAG_L1_v4_noes_r0"], |
| 146 | + }, |
| 147 | + ) |
0 commit comments