-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdefense.Rmd
627 lines (392 loc) · 17.1 KB
/
defense.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
---
title: "PhD Defense"
author: "Ben Best"
date: "`r Sys.Date()`"
output:
ioslides_presentation:
incremental: true
fig_caption: true
self_contained: false
---
```{r setup, include=TRUE, echo=F}
#library(rmarkdown)
library(knitr)
```
## Marine Conflicts
human uses vs. endangered species

<div class="notes">
Multiple interactions / conflict possible with variety of human industries.
To enable presenter mode add `?presentme=true` to URL, and `?presentme=false` to turn off.
```
library(rmarkdown)
render('~/github/dissertation/defense.Rmd', ioslides_presentation(self_contained=TRUE))
file.copy('~/github/dissertation/defense.html', '~/Dropbox/dissertation/defense.html', overwrite=T)
render(from)
system('open ~/Dropbox/dissertation/defense.html')
```
</div>
## Marine Spatial Planning {.flexbox .vcenter}
<img src='./fig/Crowder2006_fig1_sized.png' height=450>
<footer class="source">
Source: Crowder et al. (2006) Resolving Mismatches in U.S. Ocean Governance. _Science_
</footer>
<div class="notes">
need to coordinate multilple uses highlighted by the many operating agencies and activities
Many regulating agencies to oversee all these conflicting uses. Messy. Especially for ad-hoc human decision making. Need a system to handle this.
Crowder et al 2006. Resolving Mismatches in U.S. Ocean Governance. **Science**.
</div>
## Spatial Decision Support System {.flexbox .vcenter}
<img src='./fig/serdp-mapper_sperm-whale-summer-east_zoom_sized.png' height=450>
<footer class="source">
Source: http://seamap.env.duke.edu/search/?app=serdp
</footer>
<div class="notes">
Need SDSS for conservation management of megafauna.
Who, What, When, Where, How, _Why_?
**Who** spp: guilds, assoc, trophic links, aggregated into single layer
( Ok a little anthropamorphizing xharismatic megafauna)
**What** env: associations beyond usual suspects MLD, eddies
**Where** space: persistent places, shifts in When
**When** time: seasons, forecast, climate
**How** decision making: using all avail data (multiple platforms, obs portal, expert opinion)
**_Why_** skipping: more of an evolutionary Q.
</div>
## Data from Many Platforms

<div class="notes">
boat, plane, telemetry
land survey. turtle nesting site. pinniped rookery. bird nest. whale observation.
expert opinion. charrettes for conservation planning, IUCN species meetings...
</div>
## Questions (themes) {.smaller}
- How to combine data from many platforms to best predict distribution and abundance of species? (**disperate data**)
- How do these distributions change over time, seasonally and trending with climate change? (**distributions and time**)
- What environmental covariates best predict where and when these animals are distributed? (**distributions and environment**)
- How do we effectively capture and integrate uncertainty for these distributions into decision making? (**uncertainty**)
- Once we can best describe the distribution of these species in space and time, how can we integrate this information into spatial decision frameworks? (**decision frameworks**)
- for siting
- for routing
## Chapters: Data to Decision
1. Robust, Dynamic Distribution Models
- Combine plane and boat observation data (**disperate data**)
- Distance from Gulf Stream (**distributions and environment**)
- Predicting with Uncertainty in Measurement and/or Gap-filled Environment (**uncertainty**)
1. Predicting Seasonal Migration (**distributions and time**)
1. Probabilistic Range Maps (**disperate data**, **decision frameworks**, **uncertainty**)
1. Decision Mapping (**decision frameworks**, **uncertainty**)
1. Conservation Routing (**decision frameworks**)
<div class="notes">
Maximizing Species Distribution Models (SDMs) for Decision-Making: Marine Spatial Planning Methods for Cetacean Conservation
</div>
# 1. Robust, Dynamic Distribution Models
## Baseline SDM: Boat + Plane

<footer class="source">
Source: Best BD, PN Halpin _et al_ (**2012**) Online Cetacean Habitat Modeling System for the U.S. East Coast and Gulf of Mexico. _Endangered Species Research_
</footer>
<div class="notes">
part of special issue
</div>
## Dynamic Variables from Satellite
Eddies from AVISO Fronts from Pathfinder / GHRSST

<div class="notes">
</div>
## Dynamic Vars from Ocean Models

Hybrid Coordinate Ocean Model (HYCOM)
- pros: 1/12 °, cloud-free, 3D, forecast
- cons: modeled, since 2003, physical only
<div class="notes">
</div>
## Forecast Whales using Ocean Models

using ROMS to Oct, Nov (predicting from July)
<div class="notes">
Becker et al whale forecasts
</div>
## Robust Comparison
- Presence < Presence-Absence < Density?
- Regression (GLM, GAM) vs Machine Learning (Maxent, BRT)
- Predictive Performance vs Ecological Interpretation
- Space Time Lags
- Scaling Effects
<div class="notes">
</div>
## Space vs Time
Processes Observations

<div class="notes">
(after Stommel, 1963 and Dickey, 2004)
Hill, K., T. Moltmann, R. Proctor, and S. Allen. 2010. The Australian Integrated Marine Observing System: Delivering Data Streams to Address National and International Research Priorities. Marine Technology Society Journal 44:65–72.
</div>
# 2. Predicting Seasonal Migration
## Grey Whale Migration

<div class="notes">
longest mammalian migration on planet
Eastern North Pacific gray whales make a mammoth 20,000 km (12,400 mile) round trip between their southern breeding grounds off Baja California, Mexico and their northern feeding grounds off Alaska and the Beaufort Sea.
April - November: Arctic feeding grounds
[October - February: migrates south]
December - April: Mexican breeding grounds
[February - July: migrates north]
In the early winter, they move south to breed in the warm, shallow lagoons along the Mexican coast. The most popular breeding lagoons are San Ignacio lagoon, Scammon's lagoon, and Magdalena Bay, on the Pacific coast of Baja California, Mexico. Around February, the grays migrate north to feed in Arctic waters (western Beaufort Sea and Bering Sea), northwest of Alaska. A few - mainly younger - whales make a shorter journey north from Mexico, stopping off along the coastline stretching between northern California, Oregon, Washington State, USA, and British Columbia, Canada. Some feeding behaviour has been observed in all parts of the range, and around Vancouver Island, British Columbia, Canada, grays are present year-round.
</div>
## Migration Model

<div class="notes">
</div>
## Migration Model

<div class="notes">
mid: laggards leaving. End: over-acheivers.
`x`: along-shore distance
bivariate smoother (`s(x,t)`)
</div>
## Migration Model

<div class="notes">
`w`: width
</div>
# 3. Probabilistic Range Maps
## Range Map
_Eubalaena glacialis_

<footer class="source">
Source: IUCN
</footer>
<div class="notes">
expert-convened range maps of species
attributes of species (eg phylogenetic diversity)
International Union of Concerned ... N?
</div>
## IUCN Range Maps Applied

<footer class="source">
Source: Schipper et al. (2008) The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge. _Science_
</footer>
<div class="notes">
</div>
## AquaMaps Environmental Envelope

<footer class="source">
Source: _Eubalaena glacialis_ from [AquaMaps.org](http://aquamaps.org) (Ready et al. 2010)
</footer>
<div class="notes">
NOTES from AquaMaps: Predictions only describe range of western population of this species, since the eastern population is probably almost extinct. Please view suitable habitat for probable former range of eastern population. Note: eastern limit of bounding box is somewhat arbitrary, but represents the minimum supported by satellite track data and acoustic detection around Cape Farewell. Species is highly migratory and distribution represents a compromise between summer and winter range. Modified SST range, since species does not occur regularly on in large numbers in Gulf of Mexico. Extended primary production envelope, since species is a filter feeder and thus likely to be directly associated with areas of high primary production. (Kristin Kaschner, 2012-04-19 11:42:28)
</div>
## AquaMaps Environmental Envelope {.flexbox .vcenter}
Relative Environmental Suitability

<div class="notes">
Fig. 2. Trapezoidal species’ response curve describing the niche categories used in the RES model. $Min_A$ and $Max_A$ refer to absolute minimum and maximum predictor ranges, while $Min_P$ and $Max_P$ describe the ‘preferred’ range, in terms of habitat usage of a given species
... Ready(2010) methods added more features and compared with other methods.
</div>
<footer class='source'>
Source: Kaschner et al. (2006)
</footer>
## Ocean Health Index: Species

<div class="notes">
Contributes to OHI Biodiversity. One of two subgoals, the other being HAB.
</div>
## Probabilistic Range Maps {.columns-2}
Combine:
- $Y$: Occurrences for presence-only observation
- $R$: Range map from expert opinion
- $E$: "Effort"" proxy from all "Cetacea" occurrences
...
<img src='./fig/rangemap_rwhale-y-r-e_sized.png' height='500'>
<div class="notes">
</div>
## Probabilistic Range Maps {.columns-2}
Combine:
...
- Environment:
- $sst$: sea-surface temperature
- $depth$: bathymetric depth
- $d2shore$: distance to shore

<div class="notes">
</div>
## Bayesian State-Space Model
$$
\operatorname{p}(\boldsymbol{\lambda}, \boldsymbol{\beta}, \sigma^2, z | \boldsymbol{y}, \boldsymbol{W}, \boldsymbol{E}, \boldsymbol{R}) \alpha \\
\operatorname{Pois}(\boldsymbol{y}, \boldsymbol{E} \boldsymbol{\lambda}) \\
\operatorname{N_5}(\operatorname{ln} \boldsymbol{\lambda}, \boldsymbol{W} \boldsymbol{\beta}, \sigma^2 \boldsymbol{I_5}) \\
\operatorname{Bin}(\boldsymbol{R} │ 1, 1 - exp(-z \boldsymbol{\lambda}) )^{.5} \\
\operatorname{N_5}(\boldsymbol{\beta} │ \boldsymbol{\beta}_p, \boldsymbol{V}_p ) \\
\operatorname{IG}(\sigma^2 │ s_1, s_2)
$$
<div class="columns-2">
prior densities:
- $N_5(\boldsymbol{\beta}_p, \boldsymbol{V}_p)$
- $IG(s_1, s_2)$
<br>
<br>
hyperparameters:
- $\boldsymbol{\beta}_p = [0,0,0,0,0]$
- $\boldsymbol{V}_p = 1000 \boldsymbol{I}_5$
- $s_1 = s_2 = 0.1$
</div>
<div class='notes'>
</div>
## Right Whale Estimated Range {.flexbox .vcenter}

<div class="notes">
</div>
# 4. Decision Mapping
## Habitat {.flexbox .vcenter}
<!--

-->
<img src='./fig/decision-map-habitat.png' height='550'>
<div class="notes">
prediction from model
</div>
## Error {.flexbox .vcenter}
<!--

-->
<img src='./fig/decision-map-error.png' height='550'>
<div class="notes">
But that model has a certain amount of error. How do we resolve these pieces of information? [Toggle fwd/back]
TODO:
Add slide showing distribution of values for different pixels:
precise (narrow CI): low error w/ low & high mean
imprecise (wide CI): high error w/ low & med & high mean
Consider how this works with density data, treat as 3rd variable in step loss fxn or swap for integrated "likelihood of encounter"?
Compare w/ ROC
How much added value with integrated risk-loss function vs just taking the mean?
</div>
## Weights
```{r risk loss tbl, results='asis', echo=F, eval=T}
cols = c('decision', '_p_(0-0.5)', '_p_(0.5-1)')
d = data.frame(
c('go','no go'),
c( 0 , 1),
c( 3 , 0))
kable(d, format='pandoc', col.names=cols)
```
Weights associating a decided action with the integrated probability of encounter as a simple step function.
<div class="notes">
as simple step function.
</div>
## Weights
<table class="rmdtable">
<!--caption>Weights associating a decided action with the integrated probability of encounter as a simple step function.</caption-->
<tbody><tr class="header">
<th align="left">decision</th>
<th align="right"><em>p</em>(0-0.5)</th>
<th align="center"><em>p</em>(0.5-1)</th>
</tr>
<tr class="odd">
<td align="left">go</td>
<td align="right">0</td>
<td align="center" class="highlight">3</td>
</tr>
<tr class="even">
<td align="left">no go</td>
<td align="right" class="highlight">1</td>
<td align="center">0</td>
</tr>
</tbody></table>
- **conservation risk** of operating (go) and encountering whales, vs.
- **opportunity loss** of not operating (_no_ go) and _not_ encountering whales
<div class="notes">
highlighting the high cost associated with
</div>
## Integrated Probabilities

<div class="notes">
</div>
## Cost Maps per Decision

<div class="notes">
</div>
## Decision Map {.flexbox .vcenter}
Per pixel, choose decision which minimizes risk-loss function.
<!---->
<img src='./fig/decision-map-risk-decided.png' height='550'>
<div class="notes">
</div>
# 5. Conservation Routing
## Vessel Routes

<div class="notes">
Full caption. Maps of British Columbia related to conservation routing. On left, areas for gray, humpback, and sperm whales based on expert opinion (PNCIMA Atlas, 2009). On right, proposed oil tanker vessel route for servicing the forthcoming Kitimat oil and gas project.
</div>
## Integrate Marine Mammal Distributions
- Using density spatial models for 9 marine mammal species in BC from Raincoast surveys 2004-2008
- Composite risk map derived per pixel ($i$) across $n$ species ($s$) by summing relative density ($z_i$), which is based on the pixel values' ($x_i$) deviation ($\sigma_s$) from mean density ($\mu_s$), and multiplying by conservation status ($w_s$):
$$
z_{i,s} = \frac{ x_{i,s} - \mu_s }{ \sigma_s } \\
Z_i = \frac{ \sum_{s=1}^{n} z_{i,s} w_s }{ n }
$$
<div class="notes">
Density surface model outputs will be assembled into a marine mammal composite risk map, or cost surface.
Each density surface was normalized in order to highlight areas of high density relative to its average.
The unitless standard score, or z-value ($z_i$), per pixel ($i$) is calculated as the pixel’s marine mammal density estimate ($x_i$) subtracted from the mean of all density estimates for the strata ($\mu$), divided by the standard deviation of those density estimates ($\sigma$) and finally multiplied by the species weight ($w_s$) according to conservation status.
TODO:
Is $\sigma$ per pixel or for entire DSM?
How does uncertainty play into this decision making?
</div>
## Conservation Status ($w_s$) {.flexbox .vcenter}

<div class="notes">
</div>
## Composite Risk Map {.flexbox .vcenter}

<div class="notes">
</div>
## Routes for Oil Tankers {.flexbox .vcenter}

<div class="notes">
- compared with straight line (Euclidean) route
TODO:
get feedback from Raincoast, Mersk, Shaun on actual application
How could this relate to insurance incentivizing program?
Research issues with SB Channel in trying to get rerouting accomplished.
</div>
## Routes for Cruise Ships {.flexbox .vcenter}

<div class="notes">
</div>
## Further Application {.columns-2}
Boston Harbor Rerouting for Right Whales
<img src='./fig/routing_boston_harbor.png' width='350'>
<br>
<br>
<br>
<br>
Global Traffic
<img src='./fig/routing-global-traffic_sized.png' width='350'>
<footer class="source">
Sources:<br>
Left: Ward-Geiger et al. (2005) Characterization of Ship Traffic in Right Whale Critical Habitat. _Coastal Management_<br>
Right: Halpern et al. (2008) A Global Map of Human Impact on Marine Ecosystems. _Science_
</footer>
<div class="notes">
</div>
# Backup Slides
## Acknowledgements
...
<div class="notes">
PH with byramid / in tiara
Raincoast in field pic
Friends collage
</div>
# Backup Slides
...
<div class="notes">
ROC for optimum
Figs from Whitehead, McGill, Worm. 2008. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming. Ecology Letters
Gray whale migration sightings
Further Study:
Niche Modeling
Cetacean Ecology
Decision Theory
Operations Research
Environmental Economics
</div>