You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I try resuming from the pretrained model weight I get an error
This is what I am running: python cifar.py -a preresnet --depth 110 --epochs 3 --schedule 81 122 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/cifar10/preresnet-110 --resume 'checkpoint.pth.tar'
and this is the error:
RuntimeError: Error(s) in loading state_dict for DataParallel:
Missing key(s) in state_dict: "module.bn.weight", "module.bn.bias", "module.bn.running_mean", "module.bn.running_var".
Unexpected key(s) in state_dict: "module.bn1.weight", "module.bn1.bias", "module.bn1.running_mean", "module.bn1.running_var", "module.layer1.0.conv3.weight", "module.layer1.0.bn3.weight", "module.layer1.0.bn3.bias", "module.layer1.0.bn3.running_mean", "module.layer1.0.bn3.running_var", "module.layer1.0.downsample.0.weight", "module.layer1.0.downsample.1.weight", "module.layer1.0.downsample.1.bias", "module.layer1.0.downsample.1.running_mean", "module.layer1.0.downsample.1.running_var", "module.layer1.1.conv3.weight", "module.layer1.1.bn3.weight", "module.layer1.1.bn3.bias", "module.layer1.1.bn3.running_mean", "module.layer1.1.bn3.running_var", "module.layer1.2.conv3.weight", "module.layer1.2.bn3.weight", "module.layer1.2.bn3.bias", "module.layer1.2.bn3.running_mean", "module.layer1.2.bn3.running_var", "module.layer1.3.conv3.weight", "module.layer1.3.bn3.weight", "module.layer1.3.bn3.bias", "module.layer1.3.bn3.running_mean", "module.layer1.3.bn3.running_var", "module.layer1.4.conv3.weight", "module.layer1.4.bn3.weight", "module.layer1.4.bn3.bias", "module.layer1.4.bn3.running_mean", "module.layer1.4.bn3.running_var", "module.layer1.5.conv3.weight", "module.layer1.5.bn3.weight", "module.layer1.5.bn3.bias", "module.layer1.5.bn3.running_mean", "module.layer1.5.bn3.running_var", "module.layer1.6.conv3.weight", "module.layer1.6.bn3.weight", "module.layer1.6.bn3.bias", "module.layer1.6.bn3.running_mean", "module.layer1.6.bn3.running_var", "module.layer1.7.conv3.weight", "module.layer1.7.bn3.weight", "module.layer1.7.bn3.bias", "module.layer1.7.bn3.running_mean", "module.layer1.7.bn3.running_var", "module.layer1.8.conv3.weight", "module.layer1.8.bn3.weight", "module.layer1.8.bn3.bias", "module.layer1.8.bn3.running_mean", "module.layer1.8.bn3.running_var", "module.layer1.9.conv3.weight", "module.layer1.9.bn3.weight", "module.layer1.9.bn3.bias", "module.layer1.9.bn3.running_mean", "module.layer1.9.bn3.running_var", "module.layer1.10.conv3.weight", "module.layer1.10.bn3.weight", "module.layer1.10.bn3.bias", "module.layer1.10.bn3.running_mean", "module.layer1.10.bn3.running_var", "module.layer1.11.conv3.weight", "module.layer1.11.bn3.weight", "module.layer1.11.bn3.bias", "module.layer1.11.bn3.running_mean", "module.layer1.11.bn3.running_var", "module.layer1.12.conv3.weight", "module.layer1.12.bn3.weight", "module.layer1.12.bn3.bias", "module.layer1.12.bn3.running_mean", "module.layer1.12.bn3.running_var", "module.layer1.13.conv3.weight", "module.layer1.13.bn3.weight", "module.layer1.13.bn3.bias", "module.layer1.13.bn3.running_mean", "module.layer1.13.bn3.running_var", "module.layer1.14.conv3.weight", "module.layer1.14.bn3.weight", "module.layer1.14.bn3.bias", "module.layer1.14.bn3.running_mean", "module.layer1.14.bn3.running_var", "module.layer1.15.conv3.weight", "module.layer1.15.bn3.weight", "module.layer1.15.bn3.bias", "module.layer1.15.bn3.running_mean", "module.layer1.15.bn3.running_var", "module.layer1.16.conv3.weight", "module.layer1.16.bn3.weight", "module.layer1.16.bn3.bias", "module.layer1.16.bn3.running_mean", "module.layer1.16.bn3.running_var", "module.layer1.17.conv3.weight", "module.layer1.17.bn3.weight", "module.layer1.17.bn3.bias", "module.layer1.17.bn3.running_mean", "module.layer1.17.bn3.running_var", "module.layer2.0.conv3.weight", "module.layer2.0.bn3.weight", "module.layer2.0.bn3.bias", "module.layer2.0.bn3.running_mean", "module.layer2.0.bn3.running_var", "module.layer2.0.downsample.1.weight", "module.layer2.0.downsample.1.bias", "module.layer2.0.downsample.1.running_mean", "module.layer2.0.downsample.1.running_var", "module.layer2.1.conv3.weight", "module.layer2.1.bn3.weight", "module.layer2.1.bn3.bias", "module.layer2.1.bn3.running_mean", "module.layer2.1.bn3.running_var", "module.layer2.2.conv3.weight", "module.layer2.2.bn3.weight", "module.layer2.2.bn3.bias", "module.layer2.2.bn3.running_mean", "module.layer2.2.bn3.running_var", "module.layer2.3.conv3.weight", "module.layer2.3.bn3.weight", "module.layer2.3.bn3.bias", "module.layer2.3.bn3.running_mean", "module.layer2.3.bn3.running_var", "module.layer2.4.conv3.weight", "module.layer2.4.bn3.weight", "module.layer2.4.bn3.bias", "module.layer2.4.bn3.running_mean", "module.layer2.4.bn3.running_var", "module.layer2.5.conv3.weight", "module.layer2.5.bn3.weight", "module.layer2.5.bn3.bias", "module.layer2.5.bn3.running_mean", "module.layer2.5.bn3.running_var", "module.layer2.6.conv3.weight", "module.layer2.6.bn3.weight", "module.layer2.6.bn3.bias", "module.layer2.6.bn3.running_mean", "module.layer2.6.bn3.running_var", "module.layer2.7.conv3.weight", "module.layer2.7.bn3.weight", "module.layer2.7.bn3.bias", "module.layer2.7.bn3.running_mean", "module.layer2.7.bn3.running_var", "module.layer2.8.conv3.weight", "module.layer2.8.bn3.weight", "module.layer2.8.bn3.bias", "module.layer2.8.bn3.running_mean", "module.layer2.8.bn3.running_var", "module.layer2.9.conv3.weight", "module.layer2.9.bn3.weight", "module.layer2.9.bn3.bias", "module.layer2.9.bn3.running_mean", "module.layer2.9.bn3.running_var", "module.layer2.10.conv3.weight", "module.layer2.10.bn3.weight", "module.layer2.10.bn3.bias", "module.layer2.10.bn3.running_mean", "module.layer2.10.bn3.running_var", "module.layer2.11.conv3.weight", "module.layer2.11.bn3.weight", "module.layer2.11.bn3.bias", "module.layer2.11.bn3.running_mean", "module.layer2.11.bn3.running_var", "module.layer2.12.conv3.weight", "module.layer2.12.bn3.weight", "module.layer2.12.bn3.bias", "module.layer2.12.bn3.running_mean", "module.layer2.12.bn3.running_var", "module.layer2.13.conv3.weight", "module.layer2.13.bn3.weight", "module.layer2.13.bn3.bias", "module.layer2.13.bn3.running_mean", "module.layer2.13.bn3.running_var", "module.layer2.14.conv3.weight", "module.layer2.14.bn3.weight", "module.layer2.14.bn3.bias", "module.layer2.14.bn3.running_mean", "module.layer2.14.bn3.running_var", "module.layer2.15.conv3.weight", "module.layer2.15.bn3.weight", "module.layer2.15.bn3.bias", "module.layer2.15.bn3.running_mean", "module.layer2.15.bn3.running_var", "module.layer2.16.conv3.weight", "module.layer2.16.bn3.weight", "module.layer2.16.bn3.bias", "module.layer2.16.bn3.running_mean", "module.layer2.16.bn3.running_var", "module.layer2.17.conv3.weight", "module.layer2.17.bn3.weight", "module.layer2.17.bn3.bias", "module.layer2.17.bn3.running_mean", "module.layer2.17.bn3.running_var", "module.layer3.0.conv3.weight", "module.layer3.0.bn3.weight", "module.layer3.0.bn3.bias", "module.layer3.0.bn3.running_mean", "module.layer3.0.bn3.running_var", "module.layer3.0.downsample.1.weight", "module.layer3.0.downsample.1.bias", "module.layer3.0.downsample.1.running_mean", "module.layer3.0.downsample.1.running_var", "module.layer3.1.conv3.weight", "module.layer3.1.bn3.weight", "module.layer3.1.bn3.bias", "module.layer3.1.bn3.running_mean", "module.layer3.1.bn3.running_var", "module.layer3.2.conv3.weight", "module.layer3.2.bn3.weight", "module.layer3.2.bn3.bias", "module.layer3.2.bn3.running_mean", "module.layer3.2.bn3.running_var", "module.layer3.3.conv3.weight", "module.layer3.3.bn3.weight", "module.layer3.3.bn3.bias", "module.layer3.3.bn3.running_mean", "module.layer3.3.bn3.running_var", "module.layer3.4.conv3.weight", "module.layer3.4.bn3.weight", "module.layer3.4.bn3.bias", "module.layer3.4.bn3.running_mean", "module.layer3.4.bn3.running_var", "module.layer3.5.conv3.weight", "module.layer3.5.bn3.weight", "module.layer3.5.bn3.bias", "module.layer3.5.bn3.running_mean", "module.layer3.5.bn3.running_var", "module.layer3.6.conv3.weight", "module.layer3.6.bn3.weight", "module.layer3.6.bn3.bias", "module.layer3.6.bn3.running_mean", "module.layer3.6.bn3.running_var", "module.layer3.7.conv3.weight", "module.layer3.7.bn3.weight", "module.layer3.7.bn3.bias", "module.layer3.7.bn3.running_mean", "module.layer3.7.bn3.running_var", "module.layer3.8.conv3.weight", "module.layer3.8.bn3.weight", "module.layer3.8.bn3.bias", "module.layer3.8.bn3.running_mean", "module.layer3.8.bn3.running_var", "module.layer3.9.conv3.weight", "module.layer3.9.bn3.weight", "module.layer3.9.bn3.bias", "module.layer3.9.bn3.running_mean", "module.layer3.9.bn3.running_var", "module.layer3.10.conv3.weight", "module.layer3.10.bn3.weight", "module.layer3.10.bn3.bias", "module.layer3.10.bn3.running_mean", "module.layer3.10.bn3.running_var", "module.layer3.11.conv3.weight", "module.layer3.11.bn3.weight", "module.layer3.11.bn3.bias", "module.layer3.11.bn3.running_mean", "module.layer3.11.bn3.running_var", "module.layer3.12.conv3.weight", "module.layer3.12.bn3.weight", "module.layer3.12.bn3.bias", "module.layer3.12.bn3.running_mean", "module.layer3.12.bn3.running_var", "module.layer3.13.conv3.weight", "module.layer3.13.bn3.weight", "module.layer3.13.bn3.bias", "module.layer3.13.bn3.running_mean", "module.layer3.13.bn3.running_var", "module.layer3.14.conv3.weight", "module.layer3.14.bn3.weight", "module.layer3.14.bn3.bias", "module.layer3.14.bn3.running_mean", "module.layer3.14.bn3.running_var", "module.layer3.15.conv3.weight", "module.layer3.15.bn3.weight", "module.layer3.15.bn3.bias", "module.layer3.15.bn3.running_mean", "module.layer3.15.bn3.running_var", "module.layer3.16.conv3.weight", "module.layer3.16.bn3.weight", "module.layer3.16.bn3.bias", "module.layer3.16.bn3.running_mean", "module.layer3.16.bn3.running_var", "module.layer3.17.conv3.weight", "module.layer3.17.bn3.weight", "module.layer3.17.bn3.bias", "module.layer3.17.bn3.running_mean", "module.layer3.17.bn3.running_var".
size mismatch for module.layer1.0.conv1.weight: copying a param with shape torch.Size([16, 16, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.1.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.2.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.3.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.4.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.5.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.6.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.7.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.8.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.9.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.10.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.11.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.12.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.13.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.14.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.15.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.16.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer1.17.conv1.weight: copying a param with shape torch.Size([16, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).
size mismatch for module.layer2.0.bn1.weight: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([16]).
size mismatch for module.layer2.0.bn1.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([16]).
size mismatch for module.layer2.0.bn1.running_mean: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([16]).
size mismatch for module.layer2.0.bn1.running_var: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([16]).
size mismatch for module.layer2.0.conv1.weight: copying a param with shape torch.Size([32, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 16, 3, 3]).
size mismatch for module.layer2.0.downsample.0.weight: copying a param with shape torch.Size([128, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 16, 1, 1]).
size mismatch for module.layer2.1.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.2.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.3.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.4.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.5.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.6.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.7.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.8.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.9.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.10.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.11.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.12.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.13.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.14.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.15.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.16.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer2.17.conv1.weight: copying a param with shape torch.Size([32, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).
size mismatch for module.layer3.0.bn1.weight: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([32]).
size mismatch for module.layer3.0.bn1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([32]).
size mismatch for module.layer3.0.bn1.running_mean: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([32]).
size mismatch for module.layer3.0.bn1.running_var: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([32]).
size mismatch for module.layer3.0.conv1.weight: copying a param with shape torch.Size([64, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 32, 3, 3]).
size mismatch for module.layer3.0.downsample.0.weight: copying a param with shape torch.Size([256, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 32, 1, 1]).
size mismatch for module.layer3.1.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.2.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.3.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.4.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.5.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.6.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.7.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.8.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.9.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.10.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.11.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.12.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.13.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.14.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.15.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.16.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.layer3.17.conv1.weight: copying a param with shape torch.Size([64, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).
size mismatch for module.fc.weight: copying a param with shape torch.Size([100, 256]) from checkpoint, the shape in current model is torch.Size([10, 64]).
size mismatch for module.fc.bias: copying a param with shape torch.Size([100]) from checkpoint, the shape in current model is torch.Size([10]).
The text was updated successfully, but these errors were encountered:
I know it's a bit late for this reply but for anyone who is looking to this kind of errors of this repo, the pretrained-ResNet110 provided by the author is actually ResNet164, according to another issue in this repo #36.
When I try resuming from the pretrained model weight I get an error
This is what I am running:
python cifar.py -a preresnet --depth 110 --epochs 3 --schedule 81 122 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/cifar10/preresnet-110 --resume 'checkpoint.pth.tar'
and this is the error:
The text was updated successfully, but these errors were encountered: