forked from MatrixPilot/MatrixPilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmathlib.c
222 lines (203 loc) · 6.59 KB
/
mathlib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// This file is part of MatrixPilot.
//
// http://code.google.com/p/gentlenav/
//
// Copyright 2009-2011 MatrixPilot Team
// See the AUTHORS.TXT file for a list of authors of MatrixPilot.
//
// MatrixPilot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// MatrixPilot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with MatrixPilot. If not, see <http://www.gnu.org/licenses/>.
#include "dcmTypes.h"
#include "mathlibNAV.h"
#include "mathlib.h"
#if (WIN == 1 || NIX == 1)
#include "../Tools/MatrixPilot-SIL/SIL-udb.h"
#endif // (WIN == 1 || NIX == 1)
#ifndef NULL
#define NULL 0
#endif
// math libraray
#define RADIANTOCIRCULAR 10430
void vect2_16x16_rotate(vect2_16t* vector, const vect2_16t* rotate)
{
// rotate the vector by the implicit angle of rotate
// rotate is RMAX*[ cosine(theta), sine(theta) ], theta is the desired rotation angle
// upon exit, the vector [ x, y ] will be rotated by the angle theta.
// theta is positive in the counter clockwise direction.
// This routine can also be used to do a complex multiply, with 1/RMAX scaling,
// and where vector and rotate are viewed as complex numbers
union longww accum;
int16_t newx;
accum.WW = ((__builtin_mulss(rotate->x, vector->x) - __builtin_mulss(rotate->y, vector->y)) << 2);
newx = accum._.W1;
accum.WW = ((__builtin_mulss(rotate->y, vector->x) + __builtin_mulss(rotate->x, vector->y)) << 2);
vector->y = accum._.W1;
vector->x = newx;
}
void vect2_32x16_rotate(vect2_32t* vector, const vect2_16t* rotate)
{
// same as vect2_16x16_rotate, except the first vector is 32 bits
int32_t newx;
newx = long_scale(vector->x, rotate->x) - long_scale(vector->y, rotate->y);
vector->y = long_scale(vector->x, rotate->y) + long_scale(vector->y, rotate->x);
vector->x = newx;
}
void vect2_16phi_rotate(vect2_16t* vector, int8_t angle)
{
// rotate the vector by an angle, phi
// where vector is [ x, y ], angle is in byte-circular scaling
vect2_16t rotate;
rotate.y = sine(angle);
rotate.x = cosine(angle);
vect2_16x16_rotate(vector, &rotate);
}
int8_t vect2_polar(polar_16t* polar, const vect2_16t* vector)
{
// Convert from rectangular to polar coordinates using "CORDIC" arithmetic, which is basically
// a binary search for the angle.
// As a by product, the xy is rotated onto the x axis, so that y is driven to zero,
// and the magnitude of the vector winds up as the x component.
int16_t scaleShift = 0;
int8_t theta = 0;
int8_t delta_theta = 64;
int8_t theta_rot;
// int8_t steps = 7;
vect2_16t xy;
if (((vector->x) < 255) && ((vector->x) > -255) &&
((vector->y) < 255) && ((vector->y) > -255))
{
scaleShift = 6;
}
xy.x = (vector->x << scaleShift);
xy.y = (vector->y << scaleShift);
#if 0
while (steps > 0) // TODO: we could do away with 'steps' and instead test delta_theta for non-zero at the end of a do loop
{
theta_rot = delta_theta;
if (xy.y > 0) theta_rot = -theta_rot;
vect2_16phi_rotate(&xy, theta_rot);
theta += theta_rot;
delta_theta = (delta_theta >> 1);
steps--;
}
#else
do {
theta_rot = delta_theta;
if (xy.y > 0) theta_rot = -theta_rot;
vect2_16phi_rotate(&xy, theta_rot);
theta += theta_rot;
delta_theta = (delta_theta >> 1);
} while (delta_theta);
#endif
if (xy.y > 0) theta--;
if (polar != NULL) {
polar->r = (xy.x >> scaleShift);
// polar->p = (xy.y >> scaleShift);
polar->p = -theta;
}
return (-theta);
}
int16_t vect2_polar_16(polar_32t* polar, const vect2_16t* vector)
{
// Convert from rectangular to polar coordinates using "CORDIC" arithmetic, which is basically
// a binary search for the angle.
// As a by product, the xy is rotated onto the x axis, so that y is driven to zero,
// and the magnitude of the vector winds up as the x component.
// Returns a value as a 16 bit "circular" so that 180 degrees yields 2**15
int16_t scaleShift = 0;
int16_t theta16;
int8_t theta = 0;
int8_t delta_theta = 64;
int8_t theta_rot;
// int8_t steps = 7;
vect2_16t xy;
if (((vector->x) < 255) && ((vector->x) > -255) &&
((vector->y) < 255) && ((vector->y) > -255))
{
scaleShift = 6;
}
xy.x = (vector->x << scaleShift);
xy.y = (vector->y << scaleShift);
#if 0
while (steps > 0) // TODO: we could do away with 'steps' and instead test delta_theta for non-zero at the end of a do loop
{
theta_rot = delta_theta;
if (xy.y > 0) theta_rot = -theta_rot;
vect2_16phi_rotate(&xy, theta_rot);
theta += theta_rot;
delta_theta = (delta_theta >> 1);
steps--;
}
#else
do {
theta_rot = delta_theta;
if (xy.y > 0) theta_rot = -theta_rot;
vect2_16phi_rotate(&xy, theta_rot);
theta += theta_rot;
delta_theta = (delta_theta >> 1);
} while (delta_theta);
#endif
theta = -theta;
theta16 = theta << 8;
if (xy.x > 0)
{
theta16 += __builtin_divsd(__builtin_mulss(RADIANTOCIRCULAR, xy.y), xy.x);
}
if (polar != NULL) {
polar->r = (xy.x >> scaleShift);
// polar->p = (xy.y >> scaleShift);
polar->p = theta16;
}
return (theta16);
}
uint16_t vect2_16_mag(const vect2_16t* v)
{
uint32_t magsqr = __builtin_mulss(v->x, v->x) + __builtin_mulss(v->y, v->y);
return sqrt_long(magsqr);
}
uint16_t vect3_16_mag(const vect3_16t* v)
{
uint32_t magsqr = __builtin_mulss(v->x, v->x) + __builtin_mulss(v->y, v->y) + __builtin_mulss(v->z, v->z);
return sqrt_long(magsqr);
}
uint16_t vect2_16_norm(vect2_16t* result, const vect2_16t* v)
{
uint16_t mag = vect2_16_mag(v);
uint16_t half_mag = mag/2 ;
if (half_mag > 0)
{
result->x = __builtin_divsd(__builtin_mulss(RMAX/2, v->x), half_mag);
result->y = __builtin_divsd(__builtin_mulss(RMAX/2, v->y), half_mag);
}
else
{
result->x = result->y = 0;
}
return mag;
}
uint16_t vect3_16_norm(vect3_16t* result, const vect3_16t* v)
{
uint16_t mag = vect3_16_mag(v);
uint16_t half_mag = mag/2 ;
if (half_mag > 0)
{
result->x = __builtin_divsd(__builtin_mulss(RMAX/2, v->x), half_mag);
result->y = __builtin_divsd(__builtin_mulss(RMAX/2, v->y), half_mag);
result->z = __builtin_divsd(__builtin_mulss(RMAX/2, v->z), half_mag);
}
else
{
result->x = result->y = result->z = 0;
}
return mag;
}