forked from MatrixPilot/MatrixPilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmathlibNAV.c
490 lines (447 loc) · 12.5 KB
/
mathlibNAV.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// This file is part of MatrixPilot.
//
// http://code.google.com/p/gentlenav/
//
// Copyright 2009-2011 MatrixPilot Team
// See the AUTHORS.TXT file for a list of authors of MatrixPilot.
//
// MatrixPilot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// MatrixPilot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with MatrixPilot. If not, see <http://www.gnu.org/licenses/>.
#include "dcmTypes.h"
#include "mathlibNAV.h"
#if (WIN == 1 || NIX == 1)
#include "../Tools/MatrixPilot-SIL/SIL-udb.h"
#endif // (WIN == 1 || NIX == 1)
// math libraray
#define RADIANTOCIRCULAR 10430
// sine table for angles from zero to pi/2 with an increment of pi/128 radian.
// sine values are multiplied by 2**14
const int16_t sintab[] = { 0,
402, 804, 1205, 1606, 2006, 2404, 2801, 3196, 3590, 3981,
4370, 4756, 5139, 5520, 5897, 6270, 6639, 7005, 7366, 7723,
8076, 8423, 8765, 9102, 9434, 9760, 10080, 10394, 10702, 11003,
11297, 11585, 11866, 12140, 12406, 12665, 12916, 13160, 13395, 13623,
13842, 14053, 14256, 14449, 14635, 14811, 14978, 15137, 15286, 15426,
15557, 15679, 15791, 15893, 15986, 16069, 16143, 16207, 16261, 16305,
16340, 16364, 16379, 16384
};
int16_t sine(int8_t angle)
{
// returns(2**14)*sine(angle), angle measured in units of pi/128 radians
int16_t angle_int;
angle_int = angle;
if (angle_int >= 0)
{
if (angle_int > 64)
{
return (sintab[128-angle_int]);
}
else
{
return (sintab[angle_int]);
}
}
else
{
angle_int = -angle_int;
if (angle_int > 64)
{
return (-sintab[128 - angle_int]);
}
else
{
return (-sintab[angle_int]);
}
}
}
int8_t arcsine(int16_t y) // arcsine takes the y coordinate of an x,y point and returns an angle
{
// returns the inverse sine of y
// y is in Q2.14 format, 16384 is maximum value
// returned angle is a byte circular
int8_t angle = 32;
int8_t doubleangle = 64;
int8_t step = 32;
int8_t sign;
if (y > 0)
{
sign = 1;
}
else
{
sign = - 1;
y = - y;
}
if (y == 16384)
{
return sign * 64;
}
while (step > 0)
{
angle = doubleangle >> 1;
if (y == sine(angle))
{
return sign * angle;
}
else if (y > ((sine(angle) + sine(angle - 1)) >> 1))
{
doubleangle += step;
}
else
{
doubleangle -= step;
}
step = step >> 1;
}
return sign * (doubleangle >> 1);
}
int16_t cosine(int8_t angle)
{
return (sine(angle+64));
}
void rotate_2D_vector_by_vector(int16_t vector[2], int16_t rotate[2])
{
// rotate the vector by the implicit angle of rotate
// vector[0] is x, vector[1] is y
// rotate is RMAX*[ cosine(theta), sine(theta) ], theta is the desired rotation angle
// upon exit, the vector [ x, y ] will be rotated by the angle theta.
// theta is positive in the counter clockwise direction.
// This routine can also be used to do a complex multiply, with 1/RMAX scaling,
// and where vector and rotate are viewed as complex numbers
int16_t newx, newy;
union longww accum;
accum.WW = ((__builtin_mulss(rotate[0], vector[0]) - __builtin_mulss(rotate[1], vector[1])) << 2);
newx = accum._.W1;
accum.WW = ((__builtin_mulss(rotate[1], vector[0]) + __builtin_mulss(rotate[0], vector[1])) <<2 );
newy = accum._.W1;
vector[0] = newx;
vector[1] = newy;
}
void rotate_2D_long_vector_by_vector(int32_t vector[2], int16_t rotate[2])
{
// same as rotate_2D_vector_by_vector, except the first vector is 32 bits
int32_t newx, newy;
newx = long_scale(vector[0], rotate[0]) - long_scale(vector[1], rotate[1]);
newy = long_scale(vector[0], rotate[1]) + long_scale(vector[1], rotate[0]);
vector[0] = newx;
vector[1] = newy;
}
void rotate_2D_vector_by_angle(int16_t vector[2], int8_t angle)
{
// rotate the vector by angle,
// where vector is [ x, y ], angle is in byte-circular scaling
int16_t rotate[2];
rotate[1] = sine(angle);
rotate[0] = cosine(angle);
rotate_2D_vector_by_vector(vector, rotate);
}
void rotate_2D(struct relative2D* xy, int8_t angle)
{
// rotates xy by angle, measured in a counter clockwise sense.
// A mathematical angle of plus or minus pi is represented digitally as plus or minus 128.
int16_t cosang, sinang, newx, newy;
union longww accum;
sinang = sine(angle);
cosang = cosine(angle);
accum.WW = ((__builtin_mulss(cosang, xy->x) - __builtin_mulss(sinang, xy->y)) << 2) + 0x00008000;
newx = accum._.W1;
accum.WW = ((__builtin_mulss(sinang, xy->x) + __builtin_mulss(cosang, xy->y)) << 2) + 0x00008000;
newy = accum._.W1;
xy->x = newx;
xy->y = newy;
}
int8_t rect_to_polar(struct relative2D* xy)
{
// Convert from rectangular to polar coordinates using "CORDIC" arithmetic, which is basically
// a binary search for the angle.
// As a by product, the xy is rotated onto the x axis, so that y is driven to zero,
// and the magnitude of the vector winds up as the x component.
int8_t theta = 0;
int8_t delta_theta = 64;
int8_t theta_rot;
int8_t steps = 7;
int16_t scaleShift;
if (((xy-> x) < 255) &&
((xy-> x) > -255) &&
((xy-> y) < 255) &&
((xy-> y) > -255))
{
scaleShift = 6;
xy->x = (xy->x << 6);
xy->y = (xy->y << 6);
}
else
{
scaleShift = 0;
}
while (steps > 0)
{
theta_rot = delta_theta;
if (xy->y > 0) theta_rot = -theta_rot;
rotate_2D(xy, theta_rot);
theta += theta_rot;
delta_theta = (delta_theta >> 1);
steps--;
}
if (xy->y > 0) theta--;
xy->x = (xy->x >> scaleShift);
xy->y = (xy->y >> scaleShift);
return (-theta);
}
int16_t rect_to_polar16(struct relative2D* xy)
{
// Convert from rectangular to polar coordinates using "CORDIC" arithmetic, which is basically
// a binary search for the angle.
// As a by product, the xy is rotated onto the x axis, so that y is driven to zero,
// and the magnitude of the vector winds up as the x component.
// Returns a value as a 16 bit "circular" so that 180 degrees yields 2**15
int16_t scaleShift;
int16_t theta16;
int8_t theta = 0;
int8_t delta_theta = 64;
int8_t theta_rot;
int8_t steps = 7;
if (((xy-> x) < 255) &&
((xy-> x) > -255) &&
((xy-> y) < 255) &&
((xy-> y) > -255))
{
scaleShift = 6;
xy->x = (xy->x << 6);
xy->y = (xy->y << 6);
}
else
{
scaleShift = 0;
}
while (steps > 0)
{
theta_rot = delta_theta;
if (xy->y > 0) theta_rot = -theta_rot;
rotate_2D(xy, theta_rot);
theta += theta_rot;
delta_theta = (delta_theta >> 1);
steps--;
}
theta = -theta;
theta16 = theta << 8;
if (xy->x > 0)
{
theta16 += __builtin_divsd(__builtin_mulss(RADIANTOCIRCULAR, xy->y), xy->x);
}
xy->x = (xy->x >> scaleShift);
xy->y = (xy->y >> scaleShift);
return (theta16);
}
uint16_t sqrt_int(uint16_t sqr)
{
// based on Heron's algorithm
uint16_t binary_point = 0;
uint16_t result = 255;
int16_t iterations = 5;
if (sqr == 0)
{
return 0;
}
while ((sqr & 0xC000) == 0) // shift left to get a 1 in the 2 MSbits
{
sqr = sqr*4; // shift 2 bits
binary_point++; // track half of the number of bits shifted
}
sqr = sqr/2; // for convenience, Herons formula is result = (result + sqr/result) / 2
while (iterations)
{
iterations--;
result = result/2 + sqr/result;
}
result = result >> binary_point; // shift result right to account for shift left of sqr
return result;
}
uint16_t sqrt_long(uint32_t sqr)
{
// based on Heron's algorithm
uint16_t binary_point = 0;
uint16_t result = 65535; // need to start high and work down to avoid overflow in divud
int16_t iterations = 5; // thats all you need
if (sqr < 65536) // use the 16 bit square root
{
return sqrt_int((uint16_t)sqr);
}
while ((sqr & 0xC0000000) == 0) // shift left to get a 1 in the 2 MSbits
{
sqr = sqr << 2;
binary_point++; // track half of the number of bits shifted
}
sqr = sqr >> 1; // for convenience, Herons formula is result = (result + sqr/result) / 2
while (iterations)
{
iterations--;
result = result/2 + __builtin_divud(sqr, result);
}
result = result >> binary_point; // shift result right to account for shift left of sqr
return result;
}
uint16_t vector2_mag(int16_t x, int16_t y)
{
uint32_t magsqr;
magsqr = __builtin_mulss(x, x) + __builtin_mulss(y, y);
return sqrt_long(magsqr);
}
uint16_t vector3_mag(int16_t x, int16_t y, int16_t z)
{
uint32_t magsqr;
magsqr = __builtin_mulss(x, x) + __builtin_mulss(y, y) + __builtin_mulss(z, z);
return sqrt_long(magsqr);
}
uint16_t vector2_normalize(int16_t result[], int16_t input[])
{
uint16_t half_magnitude;
uint16_t magnitude;
magnitude = vector2_mag(input[0], input[1]);
half_magnitude = magnitude/2 ; // needed because divsd requires two signed values
if (half_magnitude > 0)
{
result[0] = __builtin_divsd(__builtin_mulss(RMAX/2, input[0]), half_magnitude);
result[1] = __builtin_divsd(__builtin_mulss(RMAX/2, input[1]), half_magnitude);
}
else
{
result[0]=result[1]=0;
}
return magnitude;
}
uint16_t vector3_normalize(int16_t result[], int16_t input[])
{
uint16_t half_magnitude;
uint16_t magnitude;
magnitude = vector3_mag(input[0], input[1], input[2]);
half_magnitude = magnitude/2; // needed because divsd requires two signed values
if (half_magnitude > 0)
{
result[0] = __builtin_divsd(__builtin_mulss(RMAX/2, input[0]), half_magnitude);
result[1] = __builtin_divsd(__builtin_mulss(RMAX/2, input[1]), half_magnitude);
result[2] = __builtin_divsd(__builtin_mulss(RMAX/2, input[2]), half_magnitude);
}
else
{
result[0] = result[1] = result[2] = 0;
}
return magnitude;
}
int32_t long_scale(int32_t arg1, int16_t arg2)
{
// returns arg1*arg2/RMAX
// usually this is used where arg2 is a Q14.2 fractional number
int8_t sign_result = 1;
int32_t product;
union longww accum;
union longww arg1ww;
arg1ww.WW = arg1;
if (arg1ww._.W1 < 0)
{
sign_result = -sign_result;
arg1ww.WW = -arg1ww.WW;
}
if (arg2 < 0)
{
sign_result = -sign_result;
arg2 = -arg2;
}
product = __builtin_muluu(arg2, arg1ww._.W1);
product <<= 2;
accum.WW = __builtin_muluu(arg2, arg1ww._.W0);
accum.WW <<= 2;
accum._.W0 = accum._.W1;
accum._.W1 = 0;
product += accum.WW;
if (sign_result > 0)
{
return product;
}
else
{
return -product;
}
}
int16_t find_first_bit_int16(int16_t argument)
{
// finds first bit position in the absolute value of a 16 bit signed integer
// returns the position of the first significant bit
// MSB position is 0
// LSB position is 15
// returns 16 for input=0 and 0 for input=0x8000H
int16_t input;
if (argument == 0)
{
return 16;
}
if (argument < 0)
{
input = - argument;
}
else
{
input = argument;
}
return FindFirstBitFromLeft(input) - 1;
}
int16_t find_first_bit_int32(int32_t argument)
{
// finds first bit position in the absolute value of a 32 bit signed integer
// returns the position of the first significan bit
// MSB position is 0
// LSB position is 31
// returns 32 for input=0 and 0 for input=0x80000000H
union longww input;
int16_t binw0;
int16_t binw1;
if (argument == 0)
{
return 32;
}
if (argument < 0)
{
input.WW = -argument;
}
else
{
input.WW = argument;
}
binw1 = FindFirstBitFromLeft(input._.W1);
binw0 = FindFirstBitFromLeft(input._.W0);
if (binw1 == 0)
{
return binw0 + 15;
}
else
{
return binw1 - 1;
}
}
void VectorCross(int16_t * dest, int16_t * src1, int16_t * src2)
{
// Implement the cross product. *dest = *src1X*src2;
union longww crossaccum;
crossaccum.WW = __builtin_mulss(src1[1], src2[2]);
crossaccum.WW -= __builtin_mulss(src1[2], src2[1]);
crossaccum.WW *= 4;
dest[0] = crossaccum._.W1;
crossaccum.WW = __builtin_mulss(src1[2], src2[0]);
crossaccum.WW -= __builtin_mulss(src1[0], src2[2]);
crossaccum.WW *= 4;
dest[1] = crossaccum._.W1;
crossaccum.WW = __builtin_mulss(src1[0], src2[1]);
crossaccum.WW -= __builtin_mulss(src1[1], src2[0]);
crossaccum.WW *= 4;
dest[2] = crossaccum._.W1;
}