-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtianchiOR_CG_20180722.py
270 lines (209 loc) · 9.13 KB
/
tianchiOR_CG_20180722.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# -*- coding: utf-8 -*-
import numpy as np
from gurobipy import *
import time
import csv
import matplotlib.pyplot as plt
input_file = 'C:\Bee\ProjectFile\Tianchi_scheduling_20180614\Inputdata\\'
def read_data_mach():
machine_dict1 = {} # {code:name}
machine_dict2 = {} # {name:code}
machine_att = [] # [CPU, Memory, Disk, P, M, PM]
with open(input_file + 'scheduling_preliminary_machine_resources_20180606.csv',
'rU') as fm:
reader = csv.reader(fm)
for i, row in enumerate(reader):
machine_dict1[i] = row[0]
machine_dict2[row[0]] = i
machine_att.append([int(row[1]), int(row[2]), int(row[3]), int(row[4]), int(row[5]), int(row[6])])
return np.array(machine_att)
def read_data_app():
app_dict1 = {} # {code:name}
app_dict2 = {} # {name:code}
app_att = [] # [[disk, P, M, PM]]
cpu_t = []
cpu_sort = []
mem_t = []
with open(input_file + 'scheduling_preliminary_app_resources_20180606.csv', 'rU') as fa:
reader = csv.reader(fa)
for i, row in enumerate(reader):
app_dict1[i] = row[0]
app_dict2[row[0]] = i
app_att.append([int(row[3]), int(row[4]), int(row[5]), int(row[6])])
cpu0 = row[1].split('|')
cpu1 = [float(v) for v in cpu0]
cpu_t.append(cpu1)
cpu_sort.append(sorted(cpu1))
mem0 = row[2].split('|')
cpu1 = [float(v) for v in mem0]
mem_t.append(cpu1)
return np.array(app_att), np.array(cpu_t), np.array(mem_t), cpu_sort
def read_data_inst1():
inst_dict1 = {} # {code: name}
inst_dict2 = {} # {name: code}
inst_app = np.zeros([inst_num, app_num])
with open(input_file + 'scheduling_preliminary_instance_deploy_20180606.csv', 'rU') as fi:
reader = csv.reader(fi)
for i, row in enumerate(reader):
inst_dict1[i] = row[0]
inst_dict2[row[0]] = i
inst_app[i, int(row[1].strip('app_')) - 1] = 1
return inst_app
def read_data_inst2():
app_inst_dict = {} # {app_name: [inst1,inst2,...]}
with open(input_file + 'scheduling_preliminary_instance_deploy_20180606.csv', 'rU') as fi:
reader = csv.reader(fi)
for row in reader:
if row[1] in app_inst_dict:
app_inst_dict[row[1]].append(row[0])
else:
app_inst_dict[row[1]] = [row[0]]
return app_inst_dict
def read_data_app_inter():
app1_app2 = [] # [app1, app2, interf_cnt] interference between two app
app_app = [] # constraint of an app itself
with open(input_file + 'scheduling_preliminary_app_interference_20180606.csv', 'rU') as fai:
reader = csv.reader(fai)
for i, row in enumerate(reader):
if row[0] == row[1]:
app_app.append([int(row[0].strip('app_')) - 1, int(row[2])])
else:
app1_app2.append([int(row[0].strip('app_')) - 1, int(row[1].strip('app_')) - 1, int(row[2])])
return app1_app2, app_app
def sche_rlmp_int(patt):
"""Using column generation to solve cutting stock problem -- restricted linear master problem"""
print('*******Start real master problem!********')
patt_num = int(patt.shape[1])
print('Found pattern number: ', patt_num)
try:
rlmp = Model('master-problem')
# y[j] denotes the number of pattern0[j] to be used
y = rlmp.addVars(patt_num, lb=0, vtype=GRB.INTEGER, name='y')
obj = quicksum(y[j] for j in range(patt_num))
rlmp.setObjective(obj, GRB.MINIMIZE)
for i in range(app_num):
rlmp.addConstr(quicksum(patt[i, j] * y[j] for j in range(patt_num)) >= len(app_inst['app_' + str(i + 1)]))
rlmp.optimize()
print('Objective: ', rlmp.objVal)
rlmp.printAttr('X')
if rlmp.status == GRB.OPTIMAL:
print('\n*** Successful! We have found the optimal cutting solution. ***')
except GurobiError as e:
print('Error of master-problem reported: ')
print(e)
def sche_rlmp(patt):
"""Using column generation to solve cutting stock problem -- restricted linear master problem"""
print('*******Start rlmp problem!********')
patt_num = int(patt.shape[1])
print('Found pattern number: ', patt_num)
objval, shadow_price = None, None
try:
rlmp = Model('master-problem')
# y[j] denotes the number of pattern0[j] to be used
y = rlmp.addVars(patt_num, lb=0, vtype=GRB.CONTINUOUS, name='y')
obj = quicksum(y[j] for j in range(patt_num))
rlmp.setObjective(obj, GRB.MINIMIZE)
for i in range(app_num):
rlmp.addConstr(quicksum(patt[i, j] * y[j] for j in range(patt_num)) >= len(app_inst['app_' + str(i + 1)]))
rlmp.Params.OutputFlag = 0
rlmp.optimize()
objval = rlmp.objVal
print('Objective: ', objval)
rlmp.printAttr('X')
if rlmp.status == GRB.OPTIMAL:
# shadow_price = rlmp.getAttr('Pi', rlmp.getConstrs())
shadow_price = rlmp.getAttr(GRB.Attr.Pi)
# print('Shadow price of constraints: ', shadow_price, '\n')
except GurobiError as e:
print('Error of master-problem reported: ')
print(e)
return objval, shadow_price
def sche_subp(pi):
"""Using column generation to solve cutting stock problem -- sub-problem"""
print('*******Start sub problem!********')
new_pat = np.ones([app_num, 1]) # newly generated pattern in the sub-problem
try:
subp = Model('sub-problem')
# x[i] denotes the number of piece[i] cut in this pattern
x = subp.addVars(app_num, lb=0, vtype=GRB.INTEGER, name='x')
obj = quicksum(pi[i] * x[i] for i in range(app_num))
subp.setObjective(obj, GRB.MAXIMIZE)
for t in range(time_num):
subp.addConstr(quicksum(cpu_t[k, t] * x[k] for k in range(app_num)) <= 0.5 * machine_att[5000, 0])
subp.addConstr(quicksum(mem_t[k, t] * x[k] for k in range(app_num)) <= machine_att[5000, 1])
subp.addConstr(quicksum(app_att[k, 0] * x[k] for k in range(app_num)) <= machine_att[5000, 2])
subp.addConstr(quicksum(app_att[k, 1] * x[k] for k in range(app_num)) <= machine_att[5000, 3])
subp.addConstr(quicksum(app_att[k, 2] * x[k] for k in range(app_num)) <= machine_att[5000, 4])
subp.addConstr(quicksum(app_att[k, 3] * x[k] for k in range(app_num)) <= machine_att[5000, 5])
subp.Params.OutputFlag = 0
subp.optimize()
print('Objective: ', subp.objVal)
subp.printAttr('X')
for i in range(app_num):
new_pat[i][0] = x[i].x
# print('new pattern: ', new_pat.T)
if subp.status == GRB.OPTIMAL:
# shadow_price = subp.getAttr('Pi', subp.getConstrs())
# print 'Shadow price of constraints: ', shadow_price
print('\n')
print('*** sub-problem optimal. ***')
except GurobiError as e:
print('Error of sub-problem reported: ')
print(e)
return new_pat
if __name__ == '__main__':
t0 = time.time()
inst_num = 68219
app_num = 9338
machine_num = 6000
time_num = 98
machine_att = read_data_mach()
# machine_att[:50, 0] = 32 # app_30 has 4 instances with cpu 92
# machine_att[:50, 1] = 64 # app_30 has 4 instances with memory 288
# machine_att[:50, 2] = 1024 # app_30 has 4 instances with disk 1024
# print('machine')
app_att, cpu_t, mem_t, cpu_sort = read_data_app()
cpu_max, mem_max = np.max(cpu_t, 1), np.max(mem_t, 1)
print('app number', len(cpu_max))
print('t number', len(cpu_sort[0]))
# inst_app=read_data_inst()
app_inst = read_data_inst2()
inst_num = 600
machine_num = 150
app_num = 1000
print(app_num, machine_num)
pattern0 = np.eye(app_num, app_num)
for i in range(app_num):
pattern0[i, i] = int(min(0.5 * machine_att[5000, 0]/max(cpu_t[i, :]), machine_att[5000, 1]/max(mem_t[i, :]),
machine_att[5000, 2]/max(app_att[i, 0], 0.01), machine_att[5000, 3]/max(app_att[i, 1], 0.01),
machine_att[5000, 4]/max(app_att[i, 2], 0.01), machine_att[5000, 5]/max(app_att[i, 3], 0.01)))
pattern = pattern0
print('initial pattern: ', pattern0)
stop_ind = True
max_itr = 100
rlmp_objval = [] # objective value of rlmp in each iteration
itr = 0
while itr < max_itr and stop_ind:
objv, pi = sche_rlmp(pattern)
rlmp_objval.append(objv)
new_pat = sche_subp(pi)
prof = 0
for ii in range(app_num):
prof += pi[ii] * new_pat[ii][0]
print('checking parameter: ', 1 - prof)
if 1 - prof >= -1e-2:
stop_ind = False
else:
pattern = np.concatenate((pattern, new_pat), axis=1)
itr += 1
print('current iteration time: ', itr)
print('\n')
print(' **************************************** ')
print(' **********Get the final result********** ')
print(' **************************************** ')
sche_rlmp_int(pattern)
print('Total iteration: ', itr)
t1 = time.time()
print('Total elapsed time: ', t1 - t0)
plt.plot(rlmp_objval)
plt.show()