-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathexample4.3.m
212 lines (208 loc) · 5.33 KB
/
example4.3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
%% 3D analysis of space frame
clc;
clear;
%% Input
n = 3; % number of members
EI = [1 1 1]; %Flexural rigidity
EIy = EI;
EIz = EI;
GI = [0.25 0.25 0.25].*EI; %Torsional constant
EA = [0.25 0.25 0.25].*EI; %Axial rigidity
L = [3 3 3]; % length in m
nj = n+1; % Number of Joints
codm = [0 0 0; 3 0 0; 3 0 -3; 3 -3 -3]; %Coordinate wrt X,Y.Z:
size=nj,3
dc = [1 0 0; 0 0 -1; 0 1 0]; % Direction cosines for each
tytr = [1 1 2]; % Type of transformation fo each member
psi = [0 0 90]; % Psi angle in degrees for each member
% C matrix
c1 = [1 0 0; 0 1 0; 0 0 1]; % C matrix for member 1
c2 = [0 0 -1; 0 1 0; 1 0 0]; % C matrix for member 2
c3 = [0 1 0; 0 0 1; 1 0 0]; % C matrix for member 3
uu = 12; % Number of unrestrained Degrees-of-freedom
ur = 12; % Number of restrained Degrees-of-freedom
uul = [1 2 3 4 5 6 7 8 9 10 11 12]; % global labels of
url = [13 14 15 16 17 18 19 20 21 22 23 24]; % global labels
l1 = [13 14 15 16 17 18 1 2 3 4 5 6]; % Global labels for member 1
l2 = [1 2 3 4 5 6 7 8 9 10 11 12]; % Global labels for member 2
l3 = [19 20 21 22 23 24 7 8 9 10 11 12]; % Global labels for
l= [l1; l2; l3];
dof = uu + ur; % Degrees-of-freedom
Ktotal = zeros (dof);
fem1= [0; 30; 0; 0; 0; 15; 0; 30; 0; 0; 0; -15]; % Local Fixed
fem2= [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]; % Local Fixed end
fem3= [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]; % Local Fixed end
%% Transformation matrix
T1 = zeros(12);
T2 = zeros(12);
T3 = zeros(12);
for i = 1:3
for j = 1:3
T1(i,j)=c1(i,j);
T1(i+3,j+3)=c1(i,j);
T1(i+6,j+6)=c1(i,j);
T1(i+9,j+9)=c1(i,j);
T2(i,j)=c2(i,j);
T2(i+3,j+3)=c2(i,j);
T2(i+6,j+6)=c2(i,j);
T2(i+9,j+9)=c2(i,j);
T3(i,j)=c3(i,j);
T3(i+3,j+3)=c3(i,j);
T3(i+6,j+6)=c3(i,j);
T3(i+9,j+9)=c3(i,j);
end
end
%% Getting Type of transformation and Psi angle
for i = 1:n
if tytr(i) ==1
fprintf ('Member Number =');
disp (i);
fprintf ('Type of transformation is Y-Z-X \n');
else
fprintf ('Member Number =');
disp (i);
fprintf ('Type of transformation is Z-Y-X \n');
end
fprintf ('Psi angle=');
disp (psi(i));
end
%% Stiffness coefficients for each member
sc1 = EA./L;
sc2 = 6*EIz./(L.^2);
sc3 = 6*EIy./(L.^2);
sc4 = GI./L;
sc5 = 2*EIy./L;
sc6 = 12*EIz./(L.^3);
sc7 = 12*EIy./(L.^3);
sc8 = 2*EIz./L;
%% stiffness matrix 6 by 6
for i = 1:n
Knew = zeros (dof);
k1 = [sc1(i); 0; 0; 0; 0; 0; -sc1(i); 0; 0; 0; 0; 0];
k2 = [0; sc6(i); 0; 0; 0; sc2(i); 0; -sc6(i); 0; 0; 0;
sc2(i)];
k3 = [0; 0; sc7(i); 0; -sc3(i); 0; 0; 0; -sc7(i); 0;
-sc3(i); 0];
k4 = [0; 0; 0; sc4(i); 0; 0; 0; 0; 0; -sc4(i); 0; 0];
k5 = [0; 0; -sc3(i); 0; (2*sc5(i)); 0; 0; 0; sc3(i); 0;
sc5(i); 0];
k6 = [0; sc2(i); 0; 0; 0; (2*sc8(i)); 0; -sc2(i); 0; 0;
0; sc8(i)];
k7 = -k1;
k8 = -k2;
k9 = -k3;
k10 = -k4;
k11 = [0; 0; -sc3(i); 0; sc5(i); 0; 0; 0; sc3(i); 0;
(2*sc5(i)); 0];
k12 = [0; sc2(i); 0; 0; 0; sc8(i); 0; -sc2(i); 0; 0; 0;
(2*sc8(i))];
K = [k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12];
fprintf ('Member Number =');
disp (i);
fprintf ('Local Stiffness matrix of member, [K] = \n');
disp (K);
if i == 1
T = T1;
elseif i == 2
T = T2;
else
T = T3;
end
Ttr = T';
Kg = Ttr*K*T;
fprintf ('Transformation matrix, [T] = \n');
disp (T);
fprintf ('Global Matrix, [K global] = \n');
disp (Kg);
for p = 1:12
for q = 1:12
Knew((l(i,p)),(l(i,q))) =Kg(p,q);
end
end
Ktotal = Ktotal + Knew;
if i == 1
Tt1= T;
Kg1=Kg;
fembar1= Tt1'*fem1;
elseif i == 2
Tt2 = T;
Kg2 = Kg;
fembar2= Tt2'*fem2;
else
Tt3 = T;
Kg3 = Kg;
fembar3= Tt3'*fem3;
end
end
fprintf ('Stiffness Matrix of complete structure, [Ktotal] = \n');
disp (Ktotal);
Kunr = zeros(12);
for x=1:uu
for y=1:uu
Kunr(x,y)= Ktotal(x,y);
end
end
fprintf ('Unrestrained Stiffness sub-matrix, [Kuu] = \n');
disp (Kunr);
KuuInv= inv(Kunr);
fprintf ('Inverse of Unrestrained Stiffness sub-matrix, [KuuInverse] = \n');
disp (KuuInv);
%% Creation of joint load vector
jl= [0; -30; 0; 0; 0; 15; 0; 0; 0; 0; 0; 0; 0; -30; 0; 0; 0;
-15; 0; 0; 0; 0; 0; 0]; % values given in kN or kNm
jlu = jl(1:12,1); % load vector in unrestrained dof
delu = KuuInv*jlu;
fprintf ('Joint Load vector, [Jl] = \n');
disp (jl);
fprintf ('Unrestrained displacements, [DelU] = \n');
disp (delu);
delr = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];
del = zeros (dof,1);
del = [delu; delr];
deli= zeros (12,1);
for i = 1:n
for p = 1:12
deli(p,1) = del((l(i,p)),1) ;
end
if i == 1
delbar1 = deli;
mbar1= (Kg1 * delbar1)+fembar1;
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix');
disp (delbar1);
fprintf ('Global End moment matrix');
disp (mbar1);
elseif i == 2
delbar2 = deli;
mbar2= (Kg2 * delbar2)+fembar2;
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix');
disp (delbar2);
fprintf ('Global End moment matrix');
disp (mbar2);
else
delbar3 = deli;
mbar3= (Kg3 * delbar3)+fembar3;
fprintf ('Member Number =');
disp (i);
fprintf ('Global displacement matrix');
disp (delbar3);
fprintf ('Global End moment matrix');
disp (mbar3);
end
end
%% check
mbar = [mbar1'; mbar2'; mbar3'];
jf = zeros(dof,1);
for a=1:n
for b=1:12 % size of k matrix
d = l(a,b);
jfnew = zeros(dof,1);
jfnew(d,1)=mbar(a,b);
jf=jf+jfnew;
end
end
fprintf ('Joint forces = \n');
disp (jf);