-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathqn_demo.m
153 lines (133 loc) · 3.38 KB
/
qn_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function [x,N]=quasi_newton(grad,xnew,H,options);
%Matlab routine for quasi-Newton algorithms
%using secant method for line search.
%-- by E. K. P. Chong, Feb. 11, 1994
%
% QUASI_NEWTON('grad',x0,H0);
% QUASI_NEWTON('grad',x0,H0,OPTIONS);
%
% x = QUASI_NEWTON('grad',x0,H0);
% x = QUASI_NEWTON('grad',x0,H0,OPTIONS);
%
% [x,N] = QUASI_NEWTON('grad',x0,H0);
% [x,N] = QUASI_NEWTON('grad',x0,H0,OPTIONS);
%
%The first variant finds the minimizer of a function whose gradient
%is described in grad (usually an M-file: grad.m), using initial point
%x0 and initial inverse Hessian approximation H0.
%The second variant allows a vector of optional parameters to be
%defined:
%OPTIONS(1) controls how much display output is given; set
%to 1 for a tabular display of results, (default is no display: 0).
%OPTIONS(2) is a measure of the precision required for the final point.
%OPTIONS(3) is a measure of the precision required of the gradient.
%OPTIONS(5) specifies the formula for the inverse Hessian update:
% 0=Rank One;
% 1=DFP;
% 2=BFGS;
%OPTIONS(14) is the maximum number of iterations.
%For more information type HELP FOPTIONS.
%
%The next two variants return the value of the final point.
%The last two variants return a vector of the final point and the
%number of iterations.
if nargin ~= 4
options = [];
if nargin ~= 3
disp('Wrong number of arguments.');
return;
end
end
numvars = length(xnew);
if length(options) >= 14
if options(14)==0
options(14)=1000*numvars;
end
else
options(14)=1000*numvars;
end
%clc;
format compact;
format short e;
options = foptions(options);
print = options(1);
epsilon_x = options(2);
epsilon_g = options(3);
max_iter=options(14);
ros_cnt;
if length(xnew) == 2
plot(xnew(1),xnew(2),'o')
text(xnew(1),xnew(2),'Start Point')
end
reset_cnt = 0;
g_curr=feval(grad,xnew);
if norm(g_curr) <= epsilon_g
disp('Terminating: Norm of initial gradient less than');
disp(epsilon_g);
return;
end %if
d=-H*g_curr;
for k = 1:max_iter,
xcurr=xnew;
alpha=secant(grad,xcurr,d);
xnew = xcurr+alpha*d;
if print,
disp('Iteration number k =');
disp(k); %print iteration index k
disp('alpha =');
disp(alpha); %print alpha
disp('Gradient = ');
disp(g_curr'); %print gradient
disp('New point =');
disp(xnew'); %print new point
end %if
if norm(xnew-xcurr) <= epsilon_x*norm(xcurr)
disp('Terminating: Norm of difference between iterates less than');
disp(epsilon_x);
break;
end %if
g_old=g_curr;
g_curr=feval(grad,xnew);
if norm(g_curr) <= epsilon_g
disp('Terminating: Norm of gradient less than');
disp(epsilon_g);
break;
end %if
p=alpha*d;
q=g_curr-g_old;
reset_cnt = reset_cnt+1;
if reset_cnt == 3*numvars
d=-g_curr;
reset_cnt = 0;
else
if options(5)==0 %Rank One
H = H+(p-H*q)*(p-H*q)'/(q'*(p-H*q));
elseif options(5)==1 %DFP
H = H+p*p'/(p'*q)-(H*q)*(H*q)'/(q'*H*q);
else %BFGS
H = H+(1+q'*H*q/(q'*p))*p*p'/(p'*q)-(H*q*p'+(H*q*p')')/(q'*p);
end %if
d=-H*g_curr;
end
if print,
disp('New H =');
disp(H);
disp('New d =');
disp(d);
end
pltpts(xnew,xcurr);
if k == max_iter
disp('Terminating with maximum number of iterations');
end %if
end %for
if nargout >= 1
x=xnew;
if nargout == 2
N=k;
end
else
disp('Final point =');
disp(xnew');
disp('Number of iterations =');
disp(k);
end %if