-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathPlotKernelSeries.m
60 lines (59 loc) · 1.71 KB
/
PlotKernelSeries.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
% PlotKernelSeries
% Computes and plots kernels given by a Mercer series
close all
x = linspace(0,11)';
xx = linspace(0,1,1201)';
%% iterated Brownian bridge kernel
x=x(2:end-1);
ep = 0; beta = 1;
phifunc = @(n,x) sqrt(2)*sin(pi*x*n);
lambdafunc = @(n) ((n*pi).^2+ep^2).^(-beta);
if beta < 3
M = 1000;
else
M = ceil(1/pi*sqrt(eps^(-1/beta)*(N^2*pi^2+ep^2)-ep^2));
end
%% Brownian motion kernel, K(x,z) = min(x,z)
% x=x(2:end);
% phifunc = @(n,x) sqrt(2)*sin(pi*x*(2*n-1)/2);
% lambdafunc = @(n) 4./((2*n-1).^2*pi^2);
% M = 1000;
%% "reversed" Brownian motion kernel, K(x,z) = 1 - max(x,z)
% x=x(1:end-1);
% phifunc = @(n,x) sqrt(2)*cos(pi*x*(2*n-1)/2);
% lambdafunc = @(n) 4./((2*n-1).^2*pi^2);
% M = 1000;
%% Mercer series
N = length(x);
Lambda = diag(lambdafunc(1:M));
Phi_interp = phifunc(1:M,x);
Phi_eval = phifunc(1:M,xx);
Kbasis = Phi_eval*Lambda*Phi_interp'/Lambda(1,1);
%% Plot kernel basis obtained via Mercer series
plot(xx,Kbasis)
%% Plot kernel basis given in closed form
ep=1; a=1/2;
NN = length(xx);
K = @(x,z) 1 + ep^2/2*(abs(x-a)+abs(z-a)-abs(x-z));
Kbasis = K(repmat(xx,1,N),repmat(x',NN,1));
figure
plot(xx,Kbasis)
%% Plot first 5 eigenfunctions
figure
plot(xx,Phi_eval(:,1:5))
%% HS-SVD stuff
I_N = eye(N);
Phi_1 = Phi_interp(:,1:N);
Phi_2 = Phi_interp(:,N+1:end);
Lambda_1 = Lambda(1:N,1:N);
Lambda_2 = Lambda(N+1:M,N+1:M);
Correction = Lambda_2*(Phi_1\Phi_2)'/Lambda_1;
Psi_basis = Phi_eval*[I_N;Correction];
%Kbasis = Psi_eval*Lambda_1*Phi_1'/Lambda(1,1);
%% Plot Psi basis
figure
plot(xx,Psi_basis);%(:,1:3))
Phi_correct = Phi_eval(:,N+1:M)*Correction;
%% Plot correction added to first N eigenfunctions to obtain Psi basis
figure
plot(xx,Phi_correct(:,1:5))