-
Notifications
You must be signed in to change notification settings - Fork 157
/
Copy pathOpenCVUtils.scala
333 lines (299 loc) · 10.6 KB
/
OpenCVUtils.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*
* Copyright (c) 2011-2019 Jarek Sacha. All Rights Reserved.
*
* Author's e-mail: jpsacha at gmail.com
*/
package opencv_cookbook
import org.bytedeco.javacpp.indexer.FloatIndexer
import org.bytedeco.javacpp.{DoublePointer, IntPointer}
import org.bytedeco.javacv.{CanvasFrame, Java2DFrameConverter, JavaFXFrameConverter, OpenCVFrameConverter}
import org.bytedeco.opencv.global.opencv_core._
import org.bytedeco.opencv.global.opencv_imgcodecs._
import org.bytedeco.opencv.global.opencv_imgproc._
import org.bytedeco.opencv.opencv_core._
import java.awt.image.BufferedImage
import java.io.File
import java.nio.IntBuffer
import javax.swing.WindowConstants
import scala.math.round
import scala.util.Using
/** Helper methods that simplify use of OpenCV API. */
object OpenCVUtils {
/**
* Load an image and show in a CanvasFrame. If image cannot be loaded the application will exit with code 1.
*
* @param flags Flags specifying the color type of a loaded image:
* <ul>
* <li> `>0` Return a 3-channel color image</li>
* <li> `=0` Return a gray scale image</li>
* <li> `<0` Return the loaded image as is. Note that in the current implementation
* the alpha channel, if any, is stripped from the output image. For example, a 4-channel
* RGBA image is loaded as RGB if the `flags` is greater than 0.</li>
* </ul>
* Default is gray scale.
* @return loaded image
*/
def loadAndShowOrExit(file: File, flags: Int = IMREAD_COLOR): Mat = {
// Read input image
val image = loadOrExit(file, flags)
show(image, file.getName)
image
}
/**
* Load an image. If image cannot be loaded the application will exit with code 1.
*
* @param flags Flags specifying the color type of a loaded image:
* <ul>
* <li> `>0` Return a 3-channel color image</li>
* <li> `=0` Return a gray scale image</li>
* <li> `<0` Return the loaded image as is. Note that in the current implementation
* the alpha channel, if any, is stripped from the output image. For example, a 4-channel
* RGBA image is loaded as RGB if the `flags` is greater than 0.</li>
* </ul>
* Default is gray scale.
* @return loaded image
*/
def loadOrExit(file: File, flags: Int = IMREAD_COLOR): Mat = {
// Read input image
val image = imread(file.getAbsolutePath, flags)
if (image.empty()) {
println("Couldn't load image: " + file.getAbsolutePath)
sys.exit(1)
}
image
}
/** Show image in a window. Closing the window will exit the application. */
def show(mat: Mat, title: String): Unit = {
val bi = toBufferedImage(mat)
show(bi, title)
}
/** Show image in a window. Closing the window will exit the application. */
def show(image: java.awt.Image, title: String): Unit = {
val canvas = new CanvasFrame(title, 1)
canvas.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
canvas.showImage(image)
}
/** Draw red circles at point locations on an image. */
def drawOnImage(image: Mat, points: Point2fVector): Mat = {
val dest = image.clone()
val radius = 5
val red = new Scalar(0, 0, 255, 0)
for (i <- 0 until points.size.toInt) {
val p = points.get(i)
circle(dest, new Point(round(p.x), round(p.y)), radius, red)
}
dest
}
/**
* Draw a shape on an image.
*
* @param image input image
* @param overlay shape to draw
* @param color color to use
* @return new image with drawn overlay
*/
def drawOnImage(image: Mat, overlay: Rect, color: Scalar): Mat = {
val dest = image.clone()
rectangle(dest, overlay, color)
dest
}
/**
* Save the image to the specified file.
*
* The image format is chosen based on the filename extension (see `imread()` in OpenCV documentation for the list of extensions).
* Only 8-bit (or 16-bit in case of PNG, JPEG 2000, and TIFF) single-channel or
* 3-channel (with ‘BGR’ channel order) images can be saved using this function.
* If the format, depth or channel order is different, use Mat::convertTo() , and cvtColor() to convert it before saving.
*
* @param file file to save to. File name extension decides output image format.
* @param image image to save.
*/
def save(file: File, image: Mat): Unit = {
imwrite(file.getAbsolutePath, image)
}
/**
* Convert native vector to JVM array.
*
* @param keyPoints pointer to a native vector containing KeyPoints.
*/
def toArray(keyPoints: KeyPoint): Array[KeyPoint] = {
val oldPosition = keyPoints.position()
// Convert keyPoints to Scala sequence
val points = for (i <- Array.range(0, keyPoints.capacity.toInt)) yield new KeyPoint(keyPoints.position(i))
// Reset position explicitly to avoid issues from other uses of this position-based container.
keyPoints.position(oldPosition)
points
}
/**
* Convert native vector to JVM array.
*
* @param keyPoints pointer to a native vector containing KeyPoints.
*/
def toArray(keyPoints: KeyPointVector): Array[KeyPoint] = {
// for the simplicity of the implementation we will assume that number of key points is within Int range.
require(keyPoints.size() <= Int.MaxValue)
val n = keyPoints.size().toInt
// Convert keyPoints to Scala sequence
for (i <- Array.range(0, n)) yield new KeyPoint(keyPoints.get(i))
}
/**
* Convert native vector to JVM array.
*
* @param matches pointer to a native vector containing DMatches.
* @return
*/
def toArray(matches: DMatchVector): Array[DMatch] = {
// for the simplicity of the implementation we will assume that number of key points is within Int range.
require(matches.size() <= Int.MaxValue)
val n = matches.size().toInt
// Convert keyPoints to Scala sequence
for (i <- Array.range(0, n)) yield new DMatch(matches.get(i))
}
def toBufferedImage(mat: Mat): BufferedImage = {
Using.resource(new OpenCVFrameConverter.ToMat()) { openCVConverter =>
Using.resource(openCVConverter.convert(mat)) { frame =>
Using.resource(new Java2DFrameConverter()) { java2DConverter =>
java2DConverter.convert(frame)
}
}
}
}
/**
* Convert a Mat to ScalaFX Image
*/
def toFXImage(mat: Mat): scalafx.scene.image.Image = {
import scalafx.scene.image.ImageIncludes._
Using.resource(new OpenCVFrameConverter.ToMat()) { openCVConverter =>
Using.resource(openCVConverter.convert(mat)) { frame =>
Using.resource(new JavaFXFrameConverter()) { javaFXConverter =>
javaFXConverter.convert(frame)
}
}
}
}
def toPoint(p: Point2f): Point = new Point(round(p.x), round(p.y))
/**
* Convert `Mat` to one where pixels are represented as 8 bit unsigned integers (`CV_8U`).
* It creates a copy of the input image.
*
* @param src input image.
* @return copy of the input with pixels values represented as 8 bit unsigned integers.
*/
def toMat8U(src: Mat, doScaling: Boolean = true): Mat = {
val minVal = new DoublePointer(Double.MaxValue)
val maxVal = new DoublePointer(Double.MinValue)
minMaxLoc(src, minVal, maxVal, null, null, new Mat())
val min = minVal.get(0)
val max = maxVal.get(0)
val (scale, offset) =
if (doScaling) {
val s = 255d / (max - min)
(s, -min * s)
} else (1d, 0d)
val dest = new Mat()
src.convertTo(dest, CV_8U, scale, offset)
dest
}
def toMatPoint2f(points: Seq[Point2f]): Mat = {
// Create Mat representing a vector of Points3f
val dest = new Mat(1, points.size, CV_32FC2)
val indx = dest.createIndexer().asInstanceOf[FloatIndexer]
for (i <- points.indices) {
val p = points(i)
indx.put(0, i, 0, p.x)
indx.put(0, i, 1, p.y)
}
require(dest.checkVector(2) >= 0)
dest
}
/**
* Convert a sequence of Point3D to a Mat representing a vector of Points3f.
* Calling `checkVector(3)` on the return value will return non-negative value indicating that it is a vector with 3 channels.
*/
def toMatPoint3f(points: Seq[Point3f]): Mat = {
// Create Mat representing a vector of Points3f
val dest = new Mat(1, points.size, CV_32FC3)
val indx = dest.createIndexer().asInstanceOf[FloatIndexer]
for (i <- points.indices) {
val p = points(i)
indx.put(0, i, 0, p.x)
indx.put(0, i, 1, p.y)
indx.put(0, i, 2, p.z)
}
dest
}
def toPoint2fArray(mat: Mat): Array[Point2f] = {
require(mat.checkVector(2) >= 0, "Expecting a vector Mat")
val indexer = mat.createIndexer().asInstanceOf[FloatIndexer]
val size = mat.total.toInt
val dest = new Array[Point2f](size)
for (i <- 0 until size) dest(i) = new Point2f(indexer.get(0, i, 0), indexer.get(0, i, 1))
dest
}
/**
* Convert a vector of Point2f to a Mat representing a vector of Points2f.
*/
def toMat(points: Point2fVector): Mat = {
// Create Mat representing a vector of Points3f
val size: Int = points.size.toInt
// Argument to Mat constructor must be `Int` to mean sizes, otherwise it may be interpreted as content.
val dest = new Mat(1, size, CV_32FC2)
val indx = dest.createIndexer().asInstanceOf[FloatIndexer]
for (i <- 0 until size) {
val p = points.get(i)
indx.put(0, i, 0, p.x)
indx.put(0, i, 1, p.y)
}
dest
}
/**
* Convert a Scala collection to a JavaCV "vector".
*
* @param src Scala collection
* @return JavaCV/native collection
*/
def toVector(src: Array[DMatch]): DMatchVector = {
val dest = new DMatchVector(src.length)
for (i <- src.indices) dest.put(i, src(i))
dest
}
/**
* Creates a `MatVector` and put `mat` as its only element.
*
* @return
*/
def wrapInMatVector(mat: Mat): MatVector = {
new MatVector(Array(mat): _*)
}
/**
* Creates a `IntBuffer` and put `v` as its only element.
*
* @return
*/
def wrapInIntBuffer(v: Int): IntBuffer = {
IntBuffer.wrap(Array(v))
}
/**
* Creates a `IntPointer` and put `v` as its only element.
*
* @return
*/
def wrapInIntPointer(v: Int): IntPointer = {
new IntPointer(1L).put(v)
}
/**
* Print info about the `mat`.
*/
def printInfo(mat: Mat, caption: String = ""): Unit = {
println(
caption + "\n" +
s" cols: ${mat.cols}\n" +
s" rows: ${mat.rows}\n" +
s" depth: ${mat.depth}\n" +
s" channels: ${mat.channels}\n" +
s" type: ${mat.`type`}\n" +
s" dims: ${mat.dims}\n" +
s" total: ${mat.total}\n"
)
}
}