-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtail.py
151 lines (113 loc) · 4.69 KB
/
tail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
""" long tail distribution """
import random
import simpy
import numpy as np
import math
from queueing.probabilities import *
import pandas as pd
# Settings
RHO = 0.9
MU = 1
MU_long = 5# 1/mu is exponential service times
SIM_TIME = 100 # simulation time in time units
class Queue(object):
"""
Create the initial object queue
"""
def __init__(self, env, servers, servicetime):
self.env = env
self.server = simpy.Resource(env, servers)
self.servicetime = servicetime
def service(self, customer):
"""The process"""
if random.uniform(0, 1) <= 0.75:
yield self.env.timeout(np.random.exponential(1/1, 1)[0])
else:
yield self.env.timeout(np.random.exponential(1/5, 1)[0])
def customer(env, name, qu):
"""Each customer has a ``name`` and requests a server
Subsequently, it starts a process.
need to do sthis differently though...
"""
global arrivals
a = env.now
print(f'{name} arrives at the servicedesk at {a:.2f}')
arrivals += 1
with qu.server.request() as request:
yield request
global counter
global waiting_time
global leavers
b = env.now
print('%s enters the servicedesk at %.2f.' % (name, b))
waitingtime = (b - a)
print(f'{name} waiting time was {waitingtime:.2f}')
waiting_time += waitingtime
counter += 1
yield env.process(qu.service(name))
print('%s leaves the servicedesk at %.2f.' % (name, env.now))
leavers += 1
def setup(env, servers, servicetime, Lambda):
"""Create a queue, a number of initial customers and keep creating customers
approx. every 1/lambda*60 minutes."""
# Generate queue
queue = Queue(env, servers, servicetime)
# Create 1 initial customer
# for i in range(1):
i = 0
env.process(customer(env, f'Customer {i}', queue))
# Create more customers while the simulation is running
while True:
yield env.timeout(np.random.exponential(1/Lambda, 1)[0])
i += 1
env.process(customer(env, f'Customer {i}', queue))
# Setup and start the simulation
print('QUEUE SIMULATION\n')
SIMULATIONS = 1
print(f'Simulations: {SIMULATIONS}')
for servers in [1,2,4]:
# Create dataframe to store important values to calculate statistics
cols = ['AVG_WAITING', 'AVG_ARRIVING', 'AVG_LEAVING']
data = pd.DataFrame(columns=cols)
print(f'\nServers (c): {servers}')
SERVERS = servers
LAMBDA = RHO * (MU * SERVERS) # 1/lambda is exponential inter arrival times
print("EXPECTED VALUES AND PROBABILITIES")
print(f'Rho: {RHO}\nMu: {MU}\nLambda: {LAMBDA}\nExpected interarrival time: {1 / LAMBDA:.2f} time units')
print(f'Expected processing time per server: {1 / MU:.2f} time units\n')
print(f'Probability that a job has to wait: {pwait(SERVERS, RHO):.2f}')
print(f'Expected waiting time E(W): {expw(MU, SERVERS, RHO):.2f} time units')
print(f'Expected queue length E(Lq): {expquel(SERVERS, RHO):.2f} customers\n')
# e.g. Lambda = 3 gives 1/3 per unit in simulation time, so avg is around every 0.33 timestep a new customer occurs
# 0.33 timestep could be 0.33 hour = 0.33*60 = 19.8 minutes (on average)
for s in range(SIMULATIONS):
waiting_time = 0
counter = 0
arrivals = 0
leavers = 0
# Create an environment and start the setup process
env = simpy.Environment()
env.process(setup(env, SERVERS, MU, LAMBDA))
# Execute the simulation
env.run(until=SIM_TIME)
rho = LAMBDA/(SERVERS*MU)
avg_waiting = waiting_time/(counter)
avg_arrivals = arrivals/SIM_TIME
avg_leavers = leavers/SIM_TIME
data.loc[s] = [avg_waiting, avg_arrivals, avg_leavers]
# print(f'Simulation {s+1}')
# print(f'Average waiting time: {avg_waiting:.3f} time units')
# print(f'Avg customers arriving per time unit: {avg_arrivals:.3f} time units')
# print(f'Avg customers leaving per time unit: {avg_leavers:.3f} time units\n')
# print dataframe with data
# print(data)
print(f'Expected waiting time E(W): {expw(MU, SERVERS, RHO):.3f} time units')
print(f'AVG waiting: {data["AVG_WAITING"].mean():.3f} time units')
print(conf_int(data["AVG_WAITING"].mean(), data["AVG_WAITING"].var(), SIMULATIONS, p=0.95))
print()
print(f'AVG arriving: {data["AVG_ARRIVING"].mean():.3f} per time unit')
print(conf_int(data["AVG_ARRIVING"].mean(), data["AVG_ARRIVING"].var(), SIMULATIONS, p=0.95))
print()
print(f'AVG leaving: {data["AVG_LEAVING"].mean():.3f} per time unit')
print(conf_int(data["AVG_LEAVING"].mean(), data["AVG_LEAVING"].var(), SIMULATIONS, p=0.95))
print("DONE")