-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_dataset.py
182 lines (146 loc) · 4.94 KB
/
test_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from collections import Counter, defaultdict
import itertools
import os
import pytest
from dynasent_utils import load_dataset
__author__ = 'Christopher Potts'
src_dirname = 'dynasent-v1.1'
r1_filename_template = os.path.join(
src_dirname,
'dynasent-v1.1-round01-yelp-{}.jsonl')
r2_filename_template = os.path.join(
src_dirname,
'dynasent-v1.1-round02-dynabench-{}.jsonl')
sst_filename = os.path.join(
src_dirname,
'sst-dev-validated.jsonl')
@pytest.fixture
def dataset():
data = {
'r1_train': load_dataset(r1_filename_template.format('train')),
'r1_dev': load_dataset(r1_filename_template.format('dev')),
'r1_test': load_dataset(r1_filename_template.format('test')),
'r2_train': load_dataset(r2_filename_template.format('train')),
'r2_dev': load_dataset(r2_filename_template.format('dev')),
'r2_test': load_dataset(r2_filename_template.format('test')),
'sst': load_dataset(sst_filename)}
return data
@pytest.mark.parametrize('round', [1, 2])
def test_no_sentence_overlap(round, dataset):
train_s = {d['sentence'] for d in dataset[f'r{round}_train']}
dev_s = {d['sentence'] for d in dataset[f'r{round}_dev']}
test_s = {d['sentence'] for d in dataset[f'r{round}_test']}
assert len(train_s & dev_s) == 0
assert len(dev_s & test_s) == 0
assert len(train_s & test_s) == 0
@pytest.mark.parametrize('split', [
'r1_train',
'r1_dev',
'r1_test',
'r2_train',
'r2_dev',
'r2_test'
])
def test_no_repeated_sentences(split, dataset):
sents = [d['sentence'] for d in dataset[split]]
assert len(sents) == len(set(sents))
@pytest.mark.parametrize('split, model_key, expected', [
('r1_dev', 'model_0_label', 400),
('r1_test', 'model_0_label', 400),
('r2_dev', 'model_1_label', 80),
('r2_test', 'model_1_label', 80)
])
def test_gold_vs_model_assess(split, model_key, expected, dataset):
dist = Counter([(d[model_key], d['gold_label']) for d in dataset[split]])
assert all(x == expected for x in dist.values())
@pytest.mark.parametrize('split, expected', [
['r1_dev', 600],
['r1_test', 600]
])
def test_gold_vs_rating_round1_assess(split, expected, dataset):
dist = Counter([(d['review_rating'], d['gold_label']) for d in dataset[split]])
assert all(x == expected for x in dist.values())
@pytest.mark.parametrize('split', [
'r1_train',
'r1_dev',
'r1_test',
'r2_train',
'r2_dev',
'r2_test'
])
def test_gold_label_inference(split, dataset):
for d in dataset[split]:
dist = [(len(v), k) for k, v in d['label_distribution'].items()]
dist = sorted(dist)
count, cls = dist[-1]
if count >= 3:
gold_label = cls
else:
gold_label = None
assert d['gold_label'] == gold_label
@pytest.mark.parametrize('split', [
'r1_train',
'r1_dev',
'r1_test',
'r2_train',
'r2_dev',
'r2_test',
'sst'
])
def test_unique_annotators(split, dataset):
for d in dataset[split]:
workers = {w for vals in d['label_distribution'].values() for w in vals}
assert len(workers) == 5
@pytest.mark.parametrize('split', [
'r1_train',
'r1_dev',
'r1_test',
'r2_train',
'r2_dev',
'r2_test',
'sst'
])
def test_no_real_mturk_ids(split, dataset):
for d in dataset[split]:
for workers in d['label_distribution'].values():
for w in workers:
assert _is_our_anonymized_mturk_id(w)
if '2' in split:
assert _is_our_anonymized_mturk_id(d['sentence_author'])
def _is_our_anonymized_mturk_id(s):
return s.startswith("w") and not any(c.isupper() for c in s)
@pytest.mark.parametrize('split', [
'r2_train',
'r2_dev',
'r2_test'
])
def test_no_round2_self_rating(split, dataset):
for d in dataset[split]:
author = d['sentence_author']
for workers in d['label_distribution'].values():
for w in workers:
assert w != author
def test_expected_dataset_size(dataset):
total = sum(len(exs) for split, exs in dataset.items() if split != 'sst')
expected = 121634
assert total == expected
def test_expected_sst_dev_size(dataset):
total = len(dataset['sst'])
expected = 1101
assert total == expected
def test_no_round2_assess_set_repeated_prompts(dataset):
all_prompts = defaultdict(list)
for split in ('r2_train', 'r2_dev', 'r2_test'):
for d in dataset[split]:
if d['has_prompt']:
prompt_sentence = d['prompt_data']['prompt_sentence']
all_prompts[prompt_sentence].append(d)
for split in ('r2_dev', 'r2_test'):
for d in dataset[split]:
prompt_sentence = d['prompt_data']['prompt_sentence']
assert len(all_prompts[prompt_sentence]) == 1
def test_unique_ids(dataset):
all_ids = []
for split, exs in dataset.items():
all_ids += [d['text_id'] for d in exs]
assert len(all_ids) == len(set(all_ids))