|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torchvision |
| 4 | +import torchvision.transforms as transforms |
| 5 | +import matplotlib.pyplot as plt |
| 6 | + |
| 7 | +# Device configuration |
| 8 | +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 9 | + |
| 10 | +# Hyper-parameters |
| 11 | +input_size = 784 # 28x28 |
| 12 | +hidden_size = 500 |
| 13 | +num_classes = 10 |
| 14 | +num_epochs = 2 |
| 15 | +batch_size = 100 |
| 16 | +learning_rate = 0.001 |
| 17 | + |
| 18 | +# MNIST dataset |
| 19 | +train_dataset = torchvision.datasets.MNIST(root='./data', |
| 20 | + train=True, |
| 21 | + transform=transforms.ToTensor(), |
| 22 | + download=True) |
| 23 | + |
| 24 | +test_dataset = torchvision.datasets.MNIST(root='./data', |
| 25 | + train=False, |
| 26 | + transform=transforms.ToTensor()) |
| 27 | + |
| 28 | +# Data loader |
| 29 | +train_loader = torch.utils.data.DataLoader(dataset=train_dataset, |
| 30 | + batch_size=batch_size, |
| 31 | + shuffle=True) |
| 32 | + |
| 33 | +test_loader = torch.utils.data.DataLoader(dataset=test_dataset, |
| 34 | + batch_size=batch_size, |
| 35 | + shuffle=False) |
| 36 | + |
| 37 | +examples = iter(test_loader) |
| 38 | +example_data, example_targets = examples.next() |
| 39 | + |
| 40 | +for i in range(6): |
| 41 | + plt.subplot(2,3,i+1) |
| 42 | + plt.imshow(example_data[i][0], cmap='gray') |
| 43 | +plt.show() |
| 44 | + |
| 45 | +# Fully connected neural network with one hidden layer |
| 46 | +class NeuralNet(nn.Module): |
| 47 | + def __init__(self, input_size, hidden_size, num_classes): |
| 48 | + super(NeuralNet, self).__init__() |
| 49 | + self.input_size = input_size |
| 50 | + self.l1 = nn.Linear(input_size, hidden_size) |
| 51 | + self.relu = nn.ReLU() |
| 52 | + self.l2 = nn.Linear(hidden_size, num_classes) |
| 53 | + |
| 54 | + def forward(self, x): |
| 55 | + out = self.l1(x) |
| 56 | + out = self.relu(out) |
| 57 | + out = self.l2(out) |
| 58 | + # no activation and no softmax at the end |
| 59 | + return out |
| 60 | + |
| 61 | +model = NeuralNet(input_size, hidden_size, num_classes).to(device) |
| 62 | + |
| 63 | +# Loss and optimizer |
| 64 | +criterion = nn.CrossEntropyLoss() |
| 65 | +optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) |
| 66 | + |
| 67 | +# Train the model |
| 68 | +n_total_steps = len(train_loader) |
| 69 | +for epoch in range(num_epochs): |
| 70 | + for i, (images, labels) in enumerate(train_loader): |
| 71 | + # origin shape: [100, 1, 28, 28] |
| 72 | + # resized: [100, 784] |
| 73 | + images = images.reshape(-1, 28*28).to(device) |
| 74 | + labels = labels.to(device) |
| 75 | + |
| 76 | + # Forward pass |
| 77 | + outputs = model(images) |
| 78 | + loss = criterion(outputs, labels) |
| 79 | + |
| 80 | + # Backward and optimize |
| 81 | + optimizer.zero_grad() |
| 82 | + loss.backward() |
| 83 | + optimizer.step() |
| 84 | + |
| 85 | + if (i+1) % 100 == 0: |
| 86 | + print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}') |
| 87 | + |
| 88 | +# Test the model |
| 89 | +# In test phase, we don't need to compute gradients (for memory efficiency) |
| 90 | +with torch.no_grad(): |
| 91 | + n_correct = 0 |
| 92 | + n_samples = 0 |
| 93 | + for images, labels in test_loader: |
| 94 | + images = images.reshape(-1, 28*28).to(device) |
| 95 | + labels = labels.to(device) |
| 96 | + outputs = model(images) |
| 97 | + # max returns (value ,index) |
| 98 | + _, predicted = torch.max(outputs.data, 1) |
| 99 | + n_samples += labels.size(0) |
| 100 | + n_correct += (predicted == labels).sum().item() |
| 101 | + |
| 102 | + acc = 100.0 * n_correct / n_samples |
| 103 | + print(f'Accuracy of the network on the 10000 test images: {acc} %') |
0 commit comments