-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathdensityopt.py
389 lines (331 loc) · 14.3 KB
/
densityopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""Demonstrates adapting simulation parameters to match an empirical target distribution.
"""
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils import data
from torch.distributions import LogNormal
import torchvision.utils as vutils
from blendtorch import btt
"""Batch size"""
BATCH = 64
"""Target label at descriminator"""
TARGET_LABEL = 1
"""Simulation label at descriminator"""
SIM_LABEL = 0
"""Number of Blender instances."""
SIM_INSTANCES = 4
"""Long./Lat. log-normal supershape frequency (m1,m2) target mean"""
DEFAULT_MEAN_TARGET = 2.25 # rough sample range: 8.5-10.5
"""Long./Lat. log-normal supershape frequency (m1,m2) target standard deviation"""
DEFAULT_STD_TARGET = 0.1
"""Baseline (control variate) smoothing factor"""
BASELINE_ALPHA = 0.9
class ProbModel(nn.Module):
"""Probabilistic model governing supershape parameters.
In this example, we model the shape m1/m2 as random variables. We assume
independence and associate a log-normal distribution for each of them. We choose
in order to avoid +/- parameter ambiguities that yield the same shape.
p(m1,m2) = p(m1)p(m2) with
p(m1) = LogNormal(mu_m1, std_m1),
p(m2) = LogNormal(mu_m2, std_m2)
We consider the mean/scale of each distribution to be parameters subject to
optimization. Note, we model the scale parameter as log-scale to allow
unconstrained (scale > 0) optimization.
"""
def __init__(self, m1m2_mean, m1m2_std):
super().__init__()
self.m1m2_mean = nn.Parameter(
torch.as_tensor(m1m2_mean).float(), requires_grad=True
)
self.m1m2_log_std = nn.Parameter(
torch.log(torch.as_tensor(m1m2_std).float()), requires_grad=True
)
def sample(self, n):
"""Returns n samples."""
m1, m2 = self.dists
return {
"m1": m1.sample((n,)),
"m2": m2.sample((n,)),
}
def log_prob(self, samples):
"""Returns the joint log-probabilities of the given samples."""
m1, m2 = self.dists
return m1.log_prob(samples["m1"]) + m2.log_prob(samples["m2"])
@property
def dists(self):
"""Returns the parametrized distributions for m1/m2."""
# Creating the distributions always on the fly, otherwise we get
# PyTorch warnings about differentiating a second time.
return (
LogNormal(self.m1m2_mean[0], torch.exp(self.m1m2_log_std[0])),
LogNormal(self.m1m2_mean[1], torch.exp(self.m1m2_log_std[1])),
)
def readable_params(self):
"""Helper function to access params as vector."""
return torch.cat(
[self.m1m2_mean.detach(), torch.exp(self.m1m2_log_std).detach()]
)
@staticmethod
def to_supershape(samples):
"""Converts m1/m2 samples to full supershape parameters.
We assume all parameter except for m1/m2 to be fixed in this
example.
"""
N = samples["m1"].shape[0]
params = (
samples["m1"]
.new_tensor(
[
[0, 1, 1, 3, 3, 3],
[0, 1, 1, 3, 3, 3],
]
)
.float()
.view(1, 2, 6)
.repeat(N, 1, 1)
)
params[:, 0, 0] = samples["m1"].detach()
params[:, 1, 0] = samples["m2"].detach()
return params
def update_simulations(remote_sims, params):
"""Updates all remote simulations with new supershape samples.
We split N parameter samples into N/R chunks where R is the number of
simulation instances. Besides the parameters, we send subset indices
to the simulation instances which will be returned to us alongside
with the rendered images. The subset indices allow us to associate
parameters with images in the optimization.
"""
ids = torch.arange(params.shape[0]).long()
R = len(remote_sims)
for remote, subset, subset_ids in zip(
remote_sims, torch.chunk(params, R), torch.chunk(ids, R)
):
remote.send(shape_params=subset.cpu().numpy(), shape_ids=subset_ids.numpy())
def item_transform(item):
"""Transformation applied to each received simulation item.
Extract the image, normalize it and return it together
with meta-data. In particular we return the `shape_id` which
allows us to associate the received item with a parameter
sample generated earlier.
"""
x = item["image"].astype(np.float32)
x = (x - 127.5) / 127.5
return np.transpose(x, (2, 0, 1)), item["shape_id"]
def get_target_images(dl, remotes, mu_m1m2, std_m1m2, n):
"""Returns a set of images from the target distribution."""
pm = ProbModel(mu_m1m2, std_m1m2)
samples = pm.sample(n)
update_simulations(remotes, ProbModel.to_supershape(samples))
images = []
gen = iter(dl)
for _ in range(n // BATCH):
(img, shape_id) = next(gen)
images.append(img)
return data.TensorDataset(torch.tensor(np.concatenate(images, 0)))
def infinite_batch_generator(dl):
"""Generate infinite number of batches from a dataloader."""
while True:
for d in dl:
yield d
class Discriminator(nn.Module):
"""Image descriminator.
The task of the discriminator is to distinguish images from the target
distribution from those of the simulator distribution. In the beginning
this is easy, as the target distribution is quite narrow, while the
simulator is producing images of supershapes from large spectrum. During
optimization of the simulation parameters the classification of images
will get continously harder as the simulation parameters are tuned
towards the (unkown) target distribution parameters.
The discriminator weights are trained via backpropagation.
"""
def __init__(self):
super().__init__()
ndf = 32
self.features = nn.Sequential(
# state size. (ndf) x 64 x 64
nn.Conv2d(3, ndf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid(),
)
self.apply(self._weights_init)
def _weights_init(self, m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
torch.nn.init.normal_(m.weight, 1.0, 0.02)
torch.nn.init.zeros_(m.bias)
def forward(self, x):
x = self.features(x)
return x.view(-1, 1).squeeze(1)
def run(args):
# Define how we want to launch Blender
launch_args = dict(
scene=Path(__file__).parent / "supershape.blend",
script=Path(__file__).parent / "supershape.blend.py",
num_instances=SIM_INSTANCES,
named_sockets=["DATA", "CTRL"],
)
# Create an untrained discriminator.
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
netD = Discriminator().to(dev)
# Launch Blender
with btt.BlenderLauncher(**launch_args) as bl:
# Create remote dataset
addr = bl.launch_info.addresses["DATA"]
sim_ds = btt.RemoteIterableDataset(addr, item_transform=item_transform)
sim_dl = data.DataLoader(sim_ds, batch_size=BATCH, num_workers=0, shuffle=False)
# Create a control channel to each Blender instance. We use this channel to
# communicate new shape parameters to be rendered.
addr = bl.launch_info.addresses["CTRL"]
remotes = [btt.DuplexChannel(a) for a in addr]
# Fetch images of the target distribution. In the following we assume the
# target distribution to be unknown.
if args.random_start:
mu_m1m2_target = np.random.uniform(0.0, 3, size=2).astype(np.float32)
else:
mu_m1m2_target = [DEFAULT_MEAN_TARGET, DEFAULT_MEAN_TARGET]
std_m1m2_target = [DEFAULT_STD_TARGET, DEFAULT_STD_TARGET]
print("Target params:", mu_m1m2_target, std_m1m2_target)
target_ds = get_target_images(
sim_dl, remotes, mu_m1m2_target, std_m1m2_target, n=BATCH
)
target_dl = data.DataLoader(
target_ds, batch_size=BATCH, num_workers=0, shuffle=True
)
# Initial simulation parameters. The parameters in mean and std are off from the target
# distribution parameters. Note that we especially enlarge the scale of the initial
# distribution to get explorative behaviour in the beginning.
if args.random_start:
mu_m1m2 = np.asarray(mu_m1m2_target) + np.random.randn(2)
else:
mu_m1m2 = [1.2, 3.0]
std_m1m2 = [0.4, 0.4]
pm = ProbModel(mu_m1m2, std_m1m2)
# Setup discriminator and simulation optimizer
optD = optim.Adam(netD.parameters(), lr=5e-5, betas=(0.5, 0.999))
optS = optim.Adam(pm.parameters(), lr=5e-2, betas=(0.7, 0.999))
# Get generators for image batches from target and simulation.
gen_real = infinite_batch_generator(target_dl)
gen_sim = infinite_batch_generator(sim_dl)
crit = nn.BCELoss(reduction="none")
epoch = 0
b = 0.7 # Baseline to reduce variance of gradient estimator.
first = True
param_history = []
# Send instructions to render supershapes from the starting point.
samples = pm.sample(BATCH)
update_simulations(remotes, pm.to_supershape(samples))
for (real, sim) in zip(gen_real, gen_sim):
# Train the discriminator from target and simulation images.
label = torch.full((BATCH,), TARGET_LABEL, dtype=torch.float32, device=dev)
netD.zero_grad()
target_img = real[0].to(dev)
output = netD(target_img)
errD_real = crit(output, label)
errD_real.mean().backward()
D_real = output.mean().item()
sim_img, sim_shape_id = sim
sim_img = sim_img.to(dev)
label.fill_(SIM_LABEL)
output = netD(sim_img)
errD_sim = crit(output, label)
errD_sim.mean().backward()
D_sim = output.mean().item()
if (D_real - D_sim) < 0.7:
optD.step()
print("D step: mean real", D_real, "mean sim", D_sim)
# Optimize the simulation parameters.
# We update the simulation parameters once the discriminator
# has started to converge. Note that unlike to GANs the generator
# (simulation) is giving meaningful output from the very beginning, so we
# give the discriminator some time to adjust and avoid spurious signals
# in gradient estimation of the simulation parameters.
#
# Note, the rendering function is considered a black-box and we cannot
# propagate through it. Therefore we reformulate the optimization as
# minimization of an expectation with the parameters in the distribution
# the expectation runs over. Using score-function gradients permits gradient
# based optimization _without_ access to gradients of the render function.
if not first or (D_real - D_sim) >= 0.7:
optS.zero_grad()
label.fill_(TARGET_LABEL)
with torch.no_grad():
output = netD(sim_img)
errS_sim = crit(output, label)
GD_sim = output.mean().item()
log_probs = pm.log_prob(samples)
loss = log_probs[sim_shape_id] * (errS_sim.cpu() - b)
loss.mean().backward()
optS.step()
if first:
b = errS_sim.mean()
else:
b = BASELINE_ALPHA * errS_sim.mean() + (1 - BASELINE_ALPHA) * b
print(
"S step:",
pm.m1m2_mean.detach().numpy(),
torch.exp(pm.m1m2_log_std).detach().numpy(),
"mean sim",
GD_sim,
)
first = False
del log_probs, loss
# Generate shapes/images according to updated parameters.
samples = pm.sample(BATCH)
update_simulations(remotes, pm.to_supershape(samples))
# Bookkeeping
param_history.append(pm.readable_params())
epoch += 1
if epoch % 5 == 0:
vutils.save_image(
target_img, "tmp/real_%03d.png" % (epoch), normalize=True
)
vutils.save_image(
sim_img, "tmp/sim_samples_%03d.png" % (epoch), normalize=True
)
if epoch > args.num_epochs:
# Append true target
target = torch.tensor(
np.concatenate((mu_m1m2_target, std_m1m2_target))
).float()
print("Abs.Diff to true params", abs(target - param_history[-1]))
param_history.append(target)
break
param_history = torch.stack(param_history)
return param_history
if __name__ == "__main__":
import argparse
import time
parser = argparse.ArgumentParser()
parser.add_argument("--random-start", action="store_true")
parser.add_argument("--num-runs", default=1, type=int)
parser.add_argument("--num-epochs", default=70, type=int)
args = parser.parse_args()
timestr = time.strftime("%Y%m%d_%H%M%S")
for i in range(args.num_runs):
param_history = run(args)
np.savetxt(
f"tmp/run_{timestr}_{i:02d}_densityopt.txt",
param_history,
header="mu_m1, mu_m2, std_m1, std_m2",
comments="last entry corresponds to target params",
)