-
Notifications
You must be signed in to change notification settings - Fork 168
/
policy_value_network_gpus.py
executable file
·380 lines (316 loc) · 18.1 KB
/
policy_value_network_gpus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#coding:utf-8
import tensorflow as tf
import numpy as np
import os
PS_OPS = ['Variable', 'VariableV2', 'AutoReloadVariable']
class policy_value_network_gpus(object):
def __init__(self, num_gpus = 1, res_block_nums = 7):
# self.ckpt = os.path.join(os.getcwd(), 'models/best_model.ckpt-13999') # TODO
self.num_gpus = num_gpus
self.save_dir = "./gpu_models"
self.is_logging = True
self.res_block_nums = res_block_nums
"""reset TF Graph"""
tf.reset_default_graph()
"""Creat a new graph for the network"""
# g = tf.Graph()
config = tf.ConfigProto(
inter_op_parallelism_threads=4,
intra_op_parallelism_threads=4)
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
"""Assign a Session that excute the network"""
# config.gpu_options.per_process_gpu_memory_fraction = 0.75
# self.sess = tf.Session(config=config, graph=g)
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.75)
# config = tf.ConfigProto(gpu_options=gpu_options)
self.sess = tf.Session(config=config)
# self.sess = tf.InteractiveSession()
with tf.device('/cpu:0'):
# Variables
self.filters_size = 128 # or 256
self.prob_size = 2086
self.digest = None
self.training = tf.placeholder(tf.bool, name='training')
self.inputs_ = tf.placeholder(tf.float32, [None, 9, 10, 14], name='inputs') # + 2 # TODO C plain x 2
self.c_l2 = 0.0001
self.momentum = 0.9
self.global_norm = 100
self.learning_rate = tf.placeholder(tf.float32, name='learning_rate') #0.001 #5e-3 #0.05 #
self.global_step = tf.Variable(0, name="global_step", trainable=False)
# self.learning_rate = tf.maximum(tf.train.exponential_decay(
# 0.001, self.global_step, 1e3, 0.66), 1e-5)
# self.learning_rate = tf.Variable(self.hps.lrn_rate, dtype=tf.float32, trainable=False)
tf.summary.scalar('learning_rate', self.learning_rate)
# 优化损失
optimizer = tf.train.MomentumOptimizer(
learning_rate=self.learning_rate, momentum=self.momentum, use_nesterov=True) # , use_locking=True
# optimizer = tf.train.AdamOptimizer(self.learning_rate)
# First block
self.pi_ = tf.placeholder(tf.float32, [None, self.prob_size], name='pi')
self.z_ = tf.placeholder(tf.float32, [None, 1], name='z')
# batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue([self.inputs_, self.pi_, self.z_], capacity=3 * self.num_gpus)
inputs_batches = tf.split(self.inputs_, self.num_gpus, axis=0)
pi_batches = tf.split(self.pi_, self.num_gpus, axis=0)
z_batches = tf.split(self.z_, self.num_gpus, axis=0)
tower_grads = [None] * self.num_gpus
self.loss = 0
self.accuracy = 0
self.policy_head = []
self.value_head = []
with tf.variable_scope(tf.get_variable_scope()):
"""Build the core model within the graph."""
for i in range(self.num_gpus):
with tf.device(self.assign_to_device('/gpu:{}'.format(i), ps_device='/cpu:0')): #tf.device('/gpu:{i}'):
with tf.name_scope('TOWER_{}'.format(i)) as scope:
inputs_batch, pi_batch, z_batch = inputs_batches[i], pi_batches[i], z_batches[i] # batch_queue.dequeue() #
# NWHC format
# batch, 9 * 10, 14 channels
# inputs_ = tf.reshape(self.inputs_, [-1, 9, 10, 14])
loss = self.tower_loss(inputs_batch, pi_batch, z_batch, i)
# reuse variable happens here
tf.get_variable_scope().reuse_variables()
grad = optimizer.compute_gradients(loss)
tower_grads[i] = grad
self.loss /= self.num_gpus
self.accuracy /= self.num_gpus
grads = self.average_gradients(tower_grads)
# defensive step 2 to clip norm
clipped_grads, self.norm = tf.clip_by_global_norm(
[g for g, _ in grads], self.global_norm)
# defensive step 3 check NaN
# See: https://stackoverflow.com/questions/40701712/how-to-check-nan-in-gradients-in-tensorflow-when-updating
grad_check = [tf.check_numerics(g, message='NaN Found!') for g in clipped_grads]
with tf.control_dependencies(grad_check):
self.train_op = optimizer.apply_gradients(
zip(clipped_grads, [v for _, v in grads]),
global_step=self.global_step, name='train_step')
if self.is_logging:
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
self.summaries_op = tf.summary.merge_all()
# Train Summaries
self.train_writer = tf.summary.FileWriter(
os.path.join(os.getcwd(), "cchesslogs/train"), self.sess.graph)
# Test summaries
self.test_writer = tf.summary.FileWriter(
os.path.join(os.getcwd(), "cchesslogs/test"), self.sess.graph)
self.sess.run(tf.global_variables_initializer())
# self.sess.run(tf.local_variables_initializer())
# self.sess.run(tf.initialize_all_variables())
self.saver = tf.train.Saver()
self.train_restore()
def tower_loss(self, inputs_batch, pi_batch, z_batch, i):
with tf.variable_scope('init'):
layer = tf.layers.conv2d(inputs_batch, self.filters_size, 3, padding='SAME') # filters 128(or 256)
layer = tf.contrib.layers.batch_norm(layer, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu) # epsilon = 0.25
# residual_block
with tf.variable_scope("residual_block"):
for _ in range(self.res_block_nums):
layer = self.residual_block(layer)
# policy_head
with tf.variable_scope("policy_head"):
policy_head = tf.layers.conv2d(layer, 2, 1, padding='SAME')
policy_head = tf.contrib.layers.batch_norm(policy_head, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu)
# print(self.policy_head.shape) # (?, 9, 10, 2)
policy_head = tf.reshape(policy_head, [-1, 9 * 10 * 2])
policy_head = tf.contrib.layers.fully_connected(policy_head, self.prob_size, activation_fn=None)
# prediction = tf.nn.softmax(policy_head)
self.policy_head.append(policy_head) #prediction
# value_head
with tf.variable_scope("value_head"):
value_head = tf.layers.conv2d(layer, 1, 1, padding='SAME')
value_head = tf.contrib.layers.batch_norm(value_head, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu)
# print(self.value_head.shape) # (?, 9, 10, 1)
value_head = tf.reshape(value_head, [-1, 9 * 10 * 1])
value_head = tf.contrib.layers.fully_connected(value_head, 256, activation_fn=tf.nn.relu)
value_head = tf.contrib.layers.fully_connected(value_head, 1, activation_fn=tf.nn.tanh)
self.value_head.append(value_head)
# loss
with tf.variable_scope("loss"):
policy_loss = tf.nn.softmax_cross_entropy_with_logits(labels=pi_batch, logits=policy_head) #self.pi_
policy_loss = tf.reduce_mean(policy_loss)
# self.value_loss = tf.squared_difference(self.z_, self.value_head)
value_loss = tf.losses.mean_squared_error(labels=z_batch, predictions=value_head) #self.z_
value_loss = tf.reduce_mean(value_loss)
tf.summary.scalar('mse_tower_{}'.format(i), value_loss)
regularizer = tf.contrib.layers.l2_regularizer(scale=self.c_l2)
regular_variables = tf.trainable_variables()
l2_loss = tf.contrib.layers.apply_regularization(regularizer, regular_variables)
# self.loss = self.value_loss - self.policy_loss + self.l2_loss
loss = value_loss + policy_loss + l2_loss
self.loss += loss
tf.summary.scalar('loss_tower_{}'.format(i), loss)
# train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
# self.global_step = tf.Variable(0, name="global_step", trainable=False)
# optimizer = tf.train.AdamOptimizer(self.learning_rate)
# gradients = optimizer.compute_gradients(self.loss)
# train_op = optimizer.apply_gradients(gradients, global_step=global_step)
# self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# with tf.control_dependencies(self.update_ops):
# self.train_op = optimizer.minimize(self.loss, global_step=self.global_step)
with tf.variable_scope("accuracy"):
# Accuracy
correct_prediction = tf.equal(tf.argmax(policy_head, 1), tf.argmax(pi_batch, 1)) #self.pi_
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction, name='accuracy')
self.accuracy += accuracy
tf.summary.scalar('move_accuracy_tower_{}'.format(i), accuracy)
return loss
# By default, all variables will be placed on '/gpu:0'
# So we need a custom device function, to assign all variables to '/cpu:0'
# Note: If GPUs are peered, '/gpu:0' can be a faster option
def assign_to_device(self, device, ps_device='/cpu:0'):
def _assign(op):
node_def = op if isinstance(op, tf.NodeDef) else op.node_def
if node_def.op in PS_OPS:
return "/" + ps_device
else:
return device
return _assign
def average_gradients(self, tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, var in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
# print('Network variables: {var.name}')
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def residual_block(self, in_layer):
orig = tf.identity(in_layer)
layer = tf.layers.conv2d(in_layer, self.filters_size, 3, padding='SAME') # filters 128(or 256)
layer = tf.contrib.layers.batch_norm(layer, center=False, epsilon=1e-5, fused=True,
is_training=self.training, activation_fn=tf.nn.relu)
layer = tf.layers.conv2d(layer, self.filters_size, 3, padding='SAME') # filters 128(or 256)
layer = tf.contrib.layers.batch_norm(layer, center=False, epsilon=1e-5, fused=True, is_training=self.training)
out = tf.nn.relu(tf.add(orig, layer))
return out
def train_restore(self):
if not os.path.isdir(self.save_dir):
os.mkdir(self.save_dir)
checkpoint = tf.train.get_checkpoint_state(self.save_dir)
if checkpoint and checkpoint.model_checkpoint_path:
# self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
self.saver.restore(self.sess, tf.train.latest_checkpoint(self.save_dir))
print("Successfully loaded:", tf.train.latest_checkpoint(self.save_dir))
# print("Successfully loaded:", checkpoint.model_checkpoint_path)
else:
print("Could not find old network weights")
def restore(self, file):
print("Restoring from {0}".format(file))
self.saver.restore(self.sess, file) # self.ckpt
def save(self, in_global_step):
# save_path = self.saver.save(self.sess, path, global_step=self.global_step)
save_path = self.saver.save(self.sess, os.path.join(self.save_dir, 'best_model.ckpt'),
global_step=in_global_step) #self.global_step
print("Model saved in file: {}".format(save_path))
def train_step(self, positions, probs, winners, learning_rate):
feed_dict = {
self.inputs_: positions,
self.training: True,
self.learning_rate: learning_rate,
self.pi_: probs,
self.z_: winners
}
# try:
_, accuracy, loss, global_step, summary = self.sess.run([self.train_op, self.accuracy, self.loss, self.global_step, self.summaries_op], feed_dict=feed_dict)
self.train_writer.add_summary(summary, global_step)
# print(accuracy)
# print(loss)
return accuracy, loss, global_step
# except tf.errors.InvalidArgumentError:
# print('Contains NaN gradients.')
# continue
#@profile
def forward(self, positions): # , probs, winners
# print("positions.shape : ", positions.shape)
positions = np.array(positions)
batch_n = positions.shape[0] // self.num_gpus
alone = positions.shape[0] % self.num_gpus
if alone != 0:
if(positions.shape[0] != 1):
feed_dict = {
self.inputs_: positions[:positions.shape[0] - alone],
self.training: False
}
action_probs, value = self.sess.run([self.policy_head, self.value_head], feed_dict=feed_dict)
action_probs, value = np.vstack(action_probs), np.vstack(value)
new_positions = positions[positions.shape[0] - alone:]
pos_lst = []
while len(pos_lst) == 0 or (np.array(pos_lst).shape[0] * np.array(pos_lst).shape[1]) % self.num_gpus != 0:
pos_lst.append(new_positions)
if(len(pos_lst) != 0):
shape = np.array(pos_lst).shape
pos_lst = np.array(pos_lst).reshape([shape[0] * shape[1], 9, 10, 14])
feed_dict = {
self.inputs_: pos_lst,
self.training: False
}
action_probs_2, value_2 = self.sess.run([self.policy_head, self.value_head], feed_dict=feed_dict)
# print("action_probs_2.shape : ", np.array(action_probs_2).shape)
# print("value_2.shape : ", np.array(value_2).shape)
action_probs_2, value_2 = action_probs_2[0], value_2[0]
# print("------------------------")
# print("action_probs_2.shape : ", np.array(action_probs_2).shape)
# print("value_2.shape : ", np.array(value_2).shape)
if(positions.shape[0] != 1):
action_probs = np.concatenate((action_probs, action_probs_2),axis=0)
value = np.concatenate((value, value_2),axis=0)
# print("action_probs.shape : ", np.array(action_probs).shape)
# print("value.shape : ", np.array(value).shape)
return action_probs, value
else:
return action_probs_2, value_2
else:
feed_dict = {
self.inputs_: positions,
self.training: False
}
action_probs, value = self.sess.run([self.policy_head, self.value_head], feed_dict=feed_dict)
# print("np.vstack(action_probs) shape : ", np.vstack(action_probs).shape)
# print("np.vstack(value) shape : ", np.vstack(value).shape)
return np.vstack(action_probs), np.vstack(value)
# feed_dict = {
# self.inputs_: positions if len(pos_lst) == 0 else pos_lst,
# self.training: False
# }
# ,
# self.pi_: probs,
# self.z_: winners
# action_probs, value = self.sess.run([self.policy_head, self.value_head], feed_dict=feed_dict)
# print(action_probs.shape)
# print(value.shape)
# with multi-gpu, porbs and values are separated in each outputs
# so vstack will merge them together.
# return np.vstack(action_probs), np.vstack(value)
# return action_probs, value