Skip to content

Latest commit

 

History

History
106 lines (78 loc) · 3.18 KB

README.md

File metadata and controls

106 lines (78 loc) · 3.18 KB

haiku-scalable-example

Scalable reinforcement learning agents on container orchestration

chris-chris Coverage Status

1. Purpose of the project

Implement scalable reinforcement learning agent on the container orchestraion system like k8s.

2. Container Orchestraion

  • Kubernetes
  • Google Cloud Platform

3. Reinforcement Learning Algorithms

  • IMPALA
  • A3C
  • TBD

4. Architecture

This example will introduce a clear way to deploy scalable reinforcement learning agents to the computing clusters.

alt text

5. Install

$ git clone https://github.com/chris-chris/haiku-scalable-example
$ cd haiku-scalable-example
$ pip install -r requirements.txt

6. Execute

v1. Learner + Multi Actor IMPALA wiring through gRPC.

$ python learner_server.py
$ GRPC_HOST=localhost:50051 python actor_client.py &
$ GRPC_HOST=localhost:50051 python actor_client.py &

v2. 1 Learner + Multi Actor IMPALA wiring through gRPC on docker VMs.

prepare

$ docker pull chrisai/haiku-scalable-example-learner:test
$ docker pull chrisai/haiku-scalable-example-actor:test

$ docker network create --subnet 172.20.0.0/16 --ip-range 172.20.240.0/20 multi-host-network

run

$ docker run -d -p 127.0.0.1:50051:50051 --network=multi-host-network --ip=172.20.240.1 chrisai/haiku-scalable-example-learner:test
$ docker run -d --env GRPC_HOST=172.20.240.1:50051 --network=multi-host-network chrisai/haiku-scalable-example-actor:test

wanna see logs?

$ docker ps
$ docker attach [CONTAINER ID]

v3. 1 Learner + Multi Actor IMPALA wiring through gRPC on k8s.

  • Install minikube

https://kubernetes.io/docs/tasks/tools/install-minikube/

  • Run
$ kubectl apply -f impala.yml
  • Wanna see logs?
$ kubectl logs -f impala learner
$ kubectl logs -f impala actor

7. To-dos

  • v1. 1 Learner + Multi Actor IMPALA wiring through gRPC.
  • v2. 1 Learner + Multi Actor IMPALA wiring through gRPC on docker VMs.
  • v3. 1 Learner + Multi Actor IMPALA wiring through gRPC on k8s.
  • Optimize the model weight serialization for the performance.
  • v4. Multi Learner + Multi Actor IMPALA wiring through gRPC on k8s.
  • Implement other distributed RL algorithms
  • Asynchronous Processing via Queue
  • Monitor the computing resource usages

8. Reference

I used Deepmind's open sources haiku, rlax, and google jax