-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsensitivity.py
240 lines (190 loc) · 9.64 KB
/
sensitivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import collections
import csv
import logging
import os
from collections import OrderedDict
from copy import deepcopy
import numpy as np
import pytorch_lightning
import torch
from pytorch_lightning import LightningModule, Trainer
from torch import nn
from torch.nn.utils import prune
from compression import get_pruned
from parse_config import ConfigParser
from trainer.lit_model import LitModel
from trainer.trainer import get_trainer
from utils import set_all_seeds, set_deterministic, load_compressed_checkpoint
import data as module_data
import models as module_arch
import compression as module_compression
CHECKPOINT_DIR = os.path.dirname(os.path.abspath(__file__)) + '/checkpoints'
RUNS_DIR = os.path.dirname(os.path.abspath(__file__)) + '/runs'
SEED = 42
set_all_seeds(42)
# set_deterministic()
_MODULE_CONTAINERS = (LightningModule, nn.Sequential, nn.ModuleList, nn.ModuleDict)
logger = logging.getLogger(__name__)
def sensitivity_analysis(config, fn, amounts, name="weight"):
"""Perform a sensitivity test for a model's weights parameters.
The model should be trained to maximum accuracy, because we aim to understand
the behavior of the model's performance in relation to pruning of a specific
weights tensor.
By default this function will test all of the model's parameters.
The return value is a sensitivities dictionary: the dictionary's
key is the name (string) of the weights tensor. The value is another dictionary,
where the tested sparsity-level is the key, and a (loss, top1, top5) tuple
is the value.
Below is an example of such a dictionary:
.. code-block:: python
{'model.fc1.weight': {0.0: (56.518, 79.07, 1.9159),
0.05: (56.492, 79.1, 1.9161),
0.10: (56.212, 78.854, 1.9315),
0.15: (35.424, 60.3, 3.0866)},
'model.fc2.weight': {0.0: (56.518, 79.07, 1.9159),
0.05: (56.514, 79.07, 1.9159),
0.10: (56.434, 79.074, 1.9138),
0.15: (54.454, 77.854, 2.3127)} }
"""
sensitivities = OrderedDict()
data_loader = config.init_obj('data_loader', module_data)
valid_data_loader = data_loader.split_validation()
model = LitModel(config, config.init_obj('arch', module_arch))
if config.resume:
checkpoint = torch.load(config.resume)
model.load_state_dict(checkpoint['state_dict'])
current_modules = [m_name for m_name, m in model.model.named_modules() if
not isinstance(m, _MODULE_CONTAINERS) and hasattr(m, name)]
trainer = Trainer(default_root_dir=config.save_dir, accelerator="gpu", deterministic=True)
for m_name in current_modules:
sensitivity = OrderedDict()
for amount in amounts:
model_cpy = deepcopy(model)
module = getattr(model_cpy.model, m_name)
# Create the pruner (a level pruner), the pruning policy and the
# pruning schedule.
fn.apply(module, name, amount)
log = trainer.test(model_cpy, valid_data_loader)
sensitivity[amount] = log[0]
sensitivities[m_name] = sensitivity
return sensitivities
def pruning_sensitivity_analysis(config, amounts, train=True, params=["weight"]):
sensitivity = OrderedDict()
data_loader = config.init_obj('data_loader', module_data)
valid_data_loader = data_loader.split_validation()
model = LitModel(config, config.init_obj('arch', module_arch))
if config.resume:
checkpoint = torch.load(config.resume)
model.load_state_dict(checkpoint['state_dict'])
for amount in amounts:
trainer = get_trainer(config)
model_cpy = deepcopy(model)
current_modules = [m for m in model_cpy.model.modules() if not isinstance(m, _MODULE_CONTAINERS)]
parameters_to_prune = [(m, p) for p in params for m in current_modules if hasattr(m, p)]
prune.global_unstructured(parameters_to_prune, pruning_method=prune.L1Unstructured, amount=amount)
if train:
trainer.fit(model_cpy, data_loader, valid_data_loader)
log = trainer.test(model_cpy, valid_data_loader)
sensitivity[amount] = log[0]
return sensitivity
def quantization_sensitivity_analysis(config, amounts, train=True, params=["weight"]):
sensitivities = OrderedDict()
fns = ['linear_quantization', 'forgy_quantization', 'density_quantization']
data_loader = config.init_obj('data_loader', module_data)
valid_data_loader = data_loader.split_validation()
model = LitModel(config, config.init_obj('arch', module_arch))
if config.resume:
checkpoint = torch.load(config.resume)
load_compressed_checkpoint(model, checkpoint)
trainer = Trainer(accelerator="gpu", deterministic=True)
for fn in fns:
sensitivity = OrderedDict()
quantization_fn = getattr(module_compression.quantization, fn)
for amount in amounts:
model_cpy = deepcopy(model)
current_modules = [m for m in model_cpy.model.modules() if not isinstance(m, _MODULE_CONTAINERS) and isinstance(m, nn.Conv2d)]
parameters_to_quantize = [(m, p) for p in params for m in current_modules if hasattr(m, p)]
for module, name in parameters_to_quantize:
print("Quantizing {} into {:d} bits...".format(module, amount))
quantization_fn(module, name=name, bits=amount)
if train:
trainer.fit(model_cpy, data_loader, valid_data_loader)
log = trainer.test(model_cpy, valid_data_loader)
sensitivity[amount] = log[0]
sensitivities[fn] = sensitivity
return sensitivities
def main(config):
# sparsities = 1 - np.logspace(-2, 0, 10)
# experiment = 'global pruning w/o retrain'
# sensitivity = pruning_sensitivity_analysis(config, train=True, amounts=sparsities)
sensitivities = quantization_sensitivity_analysis(config,train=False,amounts=list(range(1,9)))
# fig.savefig(config.save_dir / f"{config['name'].lower()}_sensitivity_analysis.png")
# sensitivities = {experiment: sensitivity}
fname = config.save_dir / f"{config['name'].lower()}_sensitivity_analysis.csv"
with open(fname, 'w') as csv_file:
writer = csv.writer(csv_file)
# write the header
writer.writerow(['experiment', 'sparsity', 'loss', 'top1', 'top5'])
for experiment, sensitivity in sensitivities.items():
for sparsity, values in sensitivity.items():
writer.writerow([experiment] + [sparsity] + list(values.values()))
# sensitivities_to_csv(sensitivities, config.save_dir / f"{config['name'].lower()}_sensitivity_analysis.csv")
def plot_sensitivities(sensitivities, metric='val_accuracy'):
"""Create a mulitplot of the sensitivities.
The 'sensitivities' argument is expected to have the dict-of-dict structure
described in the documentation of perform_sensitivity_test.
"""
try:
# sudo apt-get install python3-tk
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
except ImportError:
print("WARNING: Function plot_sensitivity requires package matplotlib which"
"is not installed in your execution environment.\n"
"Skipping the PNG file generation")
return
fig = plt.figure()
for param_name, sensitivity in sorted(sensitivities.items()):
sense = [values[metric] for sparsity, values in sensitivity.items()]
sparsities = [sparsity for sparsity, values in sensitivity.items()]
plt.plot(sparsities, sense, label=param_name)
plt.ylabel(metric)
plt.xlabel('sparsity')
plt.title('Pruning Sensitivity')
plt.grid()
plt.legend(loc='lower center',
ncol=2, mode="expand", borderaxespad=0.)
return fig
def sensitivities_to_csv(sensitivities, fname):
"""Create a CSV file listing from the sensitivities dictionary.
The 'sensitivities' argument is expected to have the dict-of-dict structure
described in the documentation of perform_sensitivity_test.
"""
with open(fname, 'w') as csv_file:
writer = csv.writer(csv_file)
# write the header
writer.writerow(['parameter', 'sparsity', 'loss', 'top1', 'top5'])
for param_name, sensitivity in sensitivities.items():
for sparsity, values in sensitivity.items():
writer.writerow([param_name] + [sparsity] + list(values.values()))
if __name__ == "__main__":
args = argparse.ArgumentParser(description=__doc__,
formatter_class=lambda prog:
argparse.ArgumentDefaultsHelpFormatter(prog, max_help_position=52, width=90))
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--wd', '--weight_decay'], type=float, target='optimizer;args;weight_decay'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size')
]
config = ConfigParser.from_args(args, options)
main(config)