forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path177A1 - Good Matrix Elements.cpp
80 lines (62 loc) · 1.83 KB
/
177A1 - Good Matrix Elements.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
The Smart Beaver from ABBYY got hooked on square matrices. Now he is busy studying an n?×?n size matrix, where n is odd. The Smart Beaver considers the following matrix elements good:
Elements of the main diagonal.
Elements of the secondary diagonal.
Elements of the "middle" row — the row which has exactly rows above it and the same number of rows below it.
Elements of the "middle" column — the column that has exactly columns to the left of it and the same number of columns to the right of it.
The figure shows a 5?×?5 matrix. The good elements are marked with green.
Help the Smart Beaver count the sum of good elements of the given matrix.
Input
The first line of input data contains a single odd integer n. Each of the next n lines contains n integers aij (0?=?aij?=?100) separated by single spaces — the elements of the given matrix.
The input limitations for getting 30 points are:
1?=?n?=?5
The input limitations for getting 100 points are:
1?=?n?=?101
Output
Print a single integer — the sum of good matrix elements.
Examples
inputCopy
3
1 2 3
4 5 6
7 8 9
outputCopy
45
inputCopy
5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
outputCopy
17
Note
In the first sample all matrix elements will be good. Good elements in the second sample are shown on the figure.
*/
#include<bits/stdc++.h>
using namespace std;
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
int a[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> a[i][j];
}
}
long long sum = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)
sum = sum + a[i][j] + a[i][n - j - 1];
}
}
for (int i = 0; i < n; i++) {
sum = sum + a[i][n / 2] + a[n / 2][i];
}
cout << sum - 3 * a[n / 2][n / 2];
return 0;
}