forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path173. Binary Search Tree Iterator.cpp
98 lines (69 loc) · 2.24 KB
/
173. Binary Search Tree Iterator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
Implement an iterator over a binary search tree (BST).
Your iterator will be initialized with the root node of a BST.
Calling next() will return the next smallest number in the BST.
Example:
BSTIterator iterator = new BSTIterator(root);
iterator.next(); // return 3
iterator.next(); // return 7
iterator.hasNext(); // return true
iterator.next(); // return 9
iterator.hasNext(); // return true
iterator.next(); // return 15
iterator.hasNext(); // return true
iterator.next(); // return 20
iterator.hasNext(); // return false
Note:
next() and hasNext() should run in average O(1) time and uses O(h) memory,
where h is the height of the tree.
You may assume that next() call will always be valid, that is,
there will be at least a next smallest number in the BST when next() is called.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class BSTIterator {
public:
stack<TreeNode*> s;
void leftmostInorder(TreeNode* root){
while(root){
s.push(root);
root=root->left;
}
}
BSTIterator(TreeNode* root) {
leftmostInorder(root);
}
/** @return the next smallest number */
int next() {
TreeNode *topmostNode=s.top();
s.pop();
if(topmostNode->right!=NULL) leftmostInorder(topmostNode->right);
return topmostNode->val;
}
/** @return whether we have a next smallest number */
bool hasNext() {
return s.size() > 0;
}
};
/**
* Your BSTIterator object will be instantiated and called as such:
* BSTIterator* obj = new BSTIterator(root);
* int param_1 = obj->next();
* bool param_2 = obj->hasNext();
*/
// Approach 1: Flatten the list
// Do inorder traversal and store the result in an array
// The array will be sorted
// Time complexity : O(N)
// Space complexity : O(N)
// Approach 2: Controlled Recursion
// Implemented above
// // Time complexity : O(N)
//Space complexity: The space complexity is O(h)