forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path300. Longest Increasing Subsequence.cpp
57 lines (44 loc) · 1.32 KB
/
300. Longest Increasing Subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Note:
There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
// O(n^2)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n=nums.size();
if(n==0) return 0;
vector<int> lis(n,1);
for(int i=1;i<n;i++){
for(int j=0; j<i; j++){
if(nums[i]>nums[j] && lis[i] < lis[j]+1)
lis[i]=lis[j]+1;
}
}
return *max_element(lis.begin(), lis.end());
}
};
// O(nlogn)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n=nums.size();
if(n==0) return 0;
vector<int> seq;
seq.push_back(nums[0]);
for(int i=1;i<n;i++){
if(seq.back()<nums[i])
seq.push_back(nums[i]);
else {
int index=lower_bound(seq.begin(), seq.end(), nums[i])-seq.begin();
seq[index]=nums[i];
}
}
return seq.size();
}
};