forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path72. Edit Distance.cpp
106 lines (74 loc) · 2.58 KB
/
72. Edit Distance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
// Recursive (TLE)
class Solution {
public:
int editDistance(string word1, string word2, int m, int n){
if(m==0) return n;
if(n==0) return m;
if(word1[m-1]==word2[n-1]) return editDistance(word1, word2, m-1, n-1);
return 1 + min(editDistance(word1, word2, m-1, n), min(editDistance(word1, word2, m, n-1), editDistance(word1, word2, m-1, n-1)));
}
int minDistance(string word1, string word2) {
int m=word1.length();
int n=word2.length();
return editDistance(word1, word2, m, n);
}
};
// Recursive (memoized)
class Solution {
public:
int editDistance(string word1, string word2, int m, int n, vector<vector<int> > &dp){
if(m==0) return n;
if(n==0) return m;
if(dp[m-1][n-1]!=-1) return dp[m-1][n-1];
if(word1[m-1]==word2[n-1]) return dp[m-1][n-1]=editDistance(word1, word2, m-1, n-1, dp);
return dp[m-1][n-1]= 1 + min(editDistance(word1, word2, m-1, n, dp), min(editDistance(word1, word2, m, n-1, dp), editDistance(word1, word2, m-1, n-1, dp)));
}
int minDistance(string word1, string word2) {
int m=word1.length();
int n=word2.length();
vector<vector<int> > dp(m+1, vector<int> (n+1, -1));
return editDistance(word1, word2, m, n, dp);
}
};
// DP
class Solution {
public:
int editDistance(string word1, string word2, int m, int n){
int dp[m+1][n+1];
for(int i=0;i<m+1;i++) dp[i][0]=i;
for(int j=0;j<n+1;j++) dp[0][j]=j;
for(int i=1;i<m+1;i++){
for(int j=1;j<n+1;j++){
if(word1[i-1]==word2[j-1]) dp[i][j]=dp[i-1][j-1];
else dp[i][j]= 1+ min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]));
}
}
return dp[m][n];
}
int minDistance(string word1, string word2) {
int m=word1.length();
int n=word2.length();
return editDistance(word1, word2, m, n);
}
};